Return to search

Modelos baseados no planejamento para análise de populações finitas / Design-based models for the analysis of finite populations

Estudamos o problema de obtenção de estimadores/preditores ótimos para combinações lineares de respostas coletadas de uma população finita por meio de amostragem aleatória simples. Nesse contexto, estendemos o modelo misto para populações finitas proposto por Stanek, Singer & Lencina (2004, Journal of Statistical Planning and Inference) para casos em que se incluem erros de medida (endógenos e exógenos) e informação auxiliar. Admitindo que as variâncias são conhecidas, mostramos que os estimadores/preditores propostos têm erro quadrático médio menor dentro da classe dos estimadores lineares não viciados. Por meio de estudos de simulação, comparamos o desempenho desses estimadores/preditores empíricos, i.e., obtidos com a substituição das componentes de variância por estimativas, com aquele de competidores tradicionais. Também, estendemos esses modelos para análise de estudos com estrutura do tipo pré-teste/pós-teste. Também por intermédio de simulação, comparamos o desempenho dos estimadores empíricos com o desempenho do estimador obtido por meio de técnicas clássicas de análise de medidas repetidas e com o desempenho do estimador obtido via análise de covariância por meio de mínimos quadrados, concluindo que os estimadores/ preditores empíricos apresentaram um menor erro quadrático médio e menor vício. Em geral, sugerimos o emprego dos estimadores/preditores empíricos propostos para dados com distribuição assimétrica ou amostras pequenas. / We consider optimal estimation of finite population parameters with data obtained via simple random samples. In this context, we extend a finite population mixed model proposed by Stanek, Singer & Lencina (2004, Journal of Statistical Planning and Inference) by including measurement errors (endogenous or exogenous) and auxiliary information. Assuming that variance components are known, we show that the proposed estimators/predictors have the smallest mean squared error in the class of unbiased estimators. Using simulation studies, we compare the performance of the empirical estimators/predictors obtained by replacing variance components with estimates with the performance of a traditional estimator. We also extend the finite population mixed model to data obtained via pretest-posttest designs. Through simulation studies, we compare the performance of the empirical estimator of the difference in gain between groups with the performance of the usual repeated measures estimator and with the performance of the usual analysis of covariance estimator obtained via ordinary least squares. The empirical estimator has smaller mean squared error and bias than the alternative estimators under consideration. In general, we recommend the use of the proposed estimators/ predictors for either asymmetric response distributions or small samples.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-19062008-183609
Date23 April 2008
CreatorsLuz Mery González Garcia
ContributorsJulio da Motta Singer, Heleno Bolfarine, Cristiano Ferraz, Viviana Beatriz Lencina, Damião Nóbrega da Silva
PublisherUniversidade de São Paulo, Estatística, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds