Le calcul scientifique est souvent associé au calcul numérique. Pourtant dans de nombreuses disciplines scientifiques il est nécessaire d'aller au-delà du calcul approché : nécessité de certification des résultats, calculs dans des structures mathématiques discrètes, instabilité des algorithmique numériques. Le calcul exact s'attache donc à donner des résultats exacts ou certifiés. Cependant, la principale obstruction à l'utilisation du Calcul Formel est bien souvent les faibles performances des systèmes commerciaux y compris pour les opérations fondamentales comme l'algèbre linéaire. L'objectif de ces travaux est donc de réduire l'écart entre le calcul exact et le calcul numérique, tant sur le plan algorithmique, que sur le plan logiciel. Les défis sont multiples : développer une arithmétique efficace dans les structures discrètes ; concevoir des algorithmes ayant un terme dominant de complexité optimal même en tenant compte de la croissance des données intermédiaires ; transcrire ces algorithmes dans des logiciels combinant efficacité pérenne, interfaçage et généricité.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00514925 |
Date | 20 July 2010 |
Creators | Dumas, Jean-Guillaume |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | habilitation ࠤiriger des recherches |
Page generated in 0.0024 seconds