Desenvolvemos as ideias centrais da Homologia Simplicial e provamos a invariância topológica dos grupos de homologia para espaços homeomorfos. Discutimos também a invariância topológica da característica de Euler-Poincaré mostrando a sua relação com os grupos de homologia através dos números de Betti. Adicionalmente apresentamos conceitos da Álgebra Abstrata, especificamente da teoria de Grupos, importantes para o entendimento formal da álgebra homológica. Ao final, propomos atividades didáticas com objetivo de trazer as ideias de triangulação e invariância topológica ao contexto da sala de aula. / We develop central ideas of Simplicial Homology and prove the topological invariance of homology groups for homeomorphic spaces. We also discuss topological invariance of Euler- Poincaré characteristic showing its relation with the homology groups through Betti numbers. In addition, we present concepts of abstract algebra, specifically of group theory, which are important to formal understanding of homological algebra. In the end, we propose didactic activities in order to bring the ideas of triangulation and topological invariance to context of math classes on basic education.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-23082019-163449 |
Date | 30 May 2019 |
Creators | Gonçalves, André Gomes Ventura |
Contributors | Gonçalves, Alexandre Casassola |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0023 seconds