The Periodicity theorem of Hopkins and Smith tells us that any finite spectrum supports a $v_n$-map for some $n$. We are interested in finding finite $2$-local spectra that both support a $v_2$-map with a low power of $v_2$ and have few cells.
Following the process outlined in Palmieri-Sadofsky, we study a related class of self-maps, known as $u_2$-maps, between stably finite spectra. We construct examples of spectra that might be expected to support $u_2^1$-maps, and then we use Margolis homology and homological algebra computations to show that they do not support $u_2^1$-maps. We also show that one example does not support a $u_2^2$-map. The nonexistence of $u_2$-maps on these spectra eliminates certain examples from consideration by this technique.
Identifer | oai:union.ndltd.org:uoregon.edu/oai:scholarsbank.uoregon.edu:1794/23144 |
Date | 10 April 2018 |
Creators | Merrill, Leanne |
Contributors | Sadofsky, Hal |
Publisher | University of Oregon |
Source Sets | University of Oregon |
Language | en_US |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Rights | All Rights Reserved. |
Page generated in 0.0024 seconds