Orientador: Alcibiades Rigas, Tomas Edson Barros / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-06T01:35:44Z (GMT). No. of bitstreams: 1
Hoefel_EduardoOuteiralCorrea_D.pdf: 1956293 bytes, checksum: 425e3f8509c6c6d5b7e71d692027dfaf (MD5)
Previous issue date: 2006 / Resumo: Esta tese consiste do estudo das OCHAs (Open-Closed Homotopy Algebras) sob os pontos de vista algébrico e geométrico. São demonstrados essencialmente dois resultados novos. O primeiro refere-se à definição de OCHA através de coderivações. Mais especificamente, provamos que qualquer coderivação D E Coderl (sc'Hc 0 TC'Ho) de grau 1 satisfazendo D2 = O define uma estrutura de OCHA em 'H = 'Hcffi'Ho. Onde 'Hc e 'Ho são os espaços de estados da teoria de campo de corda para cordas fechadas ("dosed strings") e cordas abertas ("open strings"), respectivamente. Até então, sabia-se que as OCHAs eram dadas por coderivações [14], mas o fato de que qualquer coderivação define uma OCHA, é novo. O segundo resultado envolve a relação entre OCHA e a versão real da compactificação de Fulton MacPherson do espaço de configurações de pontos no semi-plano superior fechado. Este resultado mostra a estreita relação entre OCHAs e a operada do "Queijo Suíço" introduzida por Voronov [41], tal relação foi de fato sugeri da na introdução de [14]. O capítulo 1 contém uma discussão sobre a definição de OCHA usando coálgebras e a conseqüente caracterização das coderivações mencionada acima. Mostramos também que a estrutura de OCHA pode ser obtida a partir de certas álgebras A(X) de forma inteiramente análoga ao modo como álgebras de Lie podem ser obtidas a partir de álgebras associativas. Em seguida, o capítulo 2 traz a abordagem das OCHAs através de operadas. O capítulo 3 traz uma discussão detalhada do espaço C(p, q) (a compactificação de Fulton;.MacPherson do espaço de configurações de p + q pontos no semi-plano superior fechado com p pontos no interior e q pontos no bordo) e no capítulo 4 mostramos que a parte essencial da operada que descreve as OCHAs aparece na primeira linha do termo E1 da seqüência espectral induzida por aquele espaço. O resultado mencionado acima significa que a estrutura algébrica das OCHAs está codificada na estratificação do bordo da variedade C(p, q), visto que esta última tem uma estrutura de variedade com córneres. No capítulo final discutimos o significado dos dois resultados obtidos procurando fazer um paralelo entre as abordagens geométrica e algébrica e mencionamos alguns problemas interessantes, como continuação deste trabalho, que podem ser considerados por estudantes interessados em Álgebras Homotópicas e temas relacionados / Abstract: This thesis consists of the study of OCHA (Open-Closed Homotopy Algebras) from both the algebraic and geometric viewpoint. It essentially contains the proof of two new results. The first one is related to the definition of OCHA through coderivations. More specifically, it is shown that any degree one coderivation D E Caderl(Sc7íc 0 TC7ío) such that D2 = O defines an OCHA structure on 7í = 7íc E9 7ío. Where 7íc and 7ío are respectively the state spaces of Closed String Field Theory and apen String Field Theory. It was cIear since its definition in 2004 that OCHAs can be defined in terms of coderivations. Nevertheless, the fact that any such coderivation is of the OCHA form is new. The second result involves the relation between OCHA and the real version of the Fulton MacPherson compactification of the configuration space of points on the cIosed upper half-plane. That result shows the cIose relation between OCHAs and the Swiss-Cheese operad introduced by Voronov [411. Such relation was in fact suggested in the introductian of [141. Chapter 1 contains a discussion about the coalgebraic definition of OCHA and the above mentioned characterization of alI coderivations. It is also shown that OCHA can be obtained from certain A8 algebras, similarly to way in which Lie algebras are obtained fro_ associative algebras. Chapter 2 then shows how to approach OCHA using aperads. The space C(p, q) (the FuIton-MacPherson compactification of the configuration space of p + q points on the upper half-plane with p interior points and q boundary points) is discussed on chapter 3 and on chapter 4 it is shown that the essential part of the operad describing OCHA appears on the first line Of the spectral sequence induced by that space. In other words, we could say that the algebraic structure of OCHA is encoded in the stratification of C(p, q), since this space has the structure of a manifold with corners. The final chapter is a discussion about the meaning of the two mais results of this thesis. After that, some problems which could be explored by the student interested on homotopy algebras and related subjects are mentioned. / Doutorado / Geometria Topologia / Doutor em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307207 |
Date | 03 June 2006 |
Creators | Hoefel, Eduardo Outeiral Correa |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Barros, Tomas Edson, Rigas, Alcibiades, 1947-, Spreafico, Mauro, Carvalho, Alexandre Luis Trovon de, Jardim, Marcos Benevenuto, Moura, Adriano Adrega de |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | 85f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0038 seconds