Return to search

Dynamic Composition and Management of Virtual Devices for Ad Hoc Multimedia Service Delivery

Pervasive computing implies the invisibility of the technology involved in providing ubiquity, such that technology is integrated into the environment and non-intrusive. In such a manner, computing and networking resources become diffused into physical environments, enabling users to exploit their provided functionalities such that functionality is distributed, enabling it to be controlled, monitored, managed, and extended beyond what it was initially designed to do. Moreover, computer awareness moves towards user-centricity, whereby systems seamlessly adapt to the characteristics, preferences, and current situations of users and their respective surrounding environments. Users exploit such functionalities in the form of a virtual device, whereby a collection of heterogeneous devices in the vicinity of the user are behaving as one single homogeneous device for the benefit of the user in solving some given task.
This dissertation investigates the problem of dynamic composition and management of virtual devices for ad hoc multimedia service delivery and proposes an autonomous policy driven framework for virtual device management. The framework consists of a hierarchical structure of distributed elements, including autonomic elements, all working towards the self-management of virtual devices. The research presented in this dissertation addresses the functionalities of these components.
More specifically, contributions are made towards the autonomous management of virtual devices, moving away from infrastructure based schemes with heavy user involvement to decentralized and zero touch (i.e., no user involvement) solutions. In doing so, the components and methodology behind a policy-driven autonomous framework for the dynamic discovery, selection, and composition of multimodal multi-device services are presented. The framework operates in an ad hoc network setting and introduces a Service Overlay Network (SON) based definition of a virtual device.
Furthermore, device and service discovery, composition, integration, and adaptation schemes are designed for Mobile Ad hoc Network Environments (MANETs) enabling users to generate, on-the-fly, complex strong specific systems, embedding in a distributed manner, QoS models providing compositions that form the best possible virtual device at the time of need.
Experimental studies are presented to demonstrate the performance of the proposed schemes.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/19865
Date January 2011
CreatorsKarmouch, Eric
ContributorsNayak, Amiya
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds