Return to search

Socio-semantic Networks Algorithm for a Point of View Based Visualization of On-line Communities

Dans le problème de détection de communautés il est possible d'utiliser soit la dimension structurelle, soit la dimension compositionelle du réseau : dans le premier cas les communautés seraient composées par des groupes de noeuds fortement connectés mais peu similaires, et pour le deuxième cas, les groupes auraient des noeuds similaires mais faiblement connectés. Donc en ne choisissant qu'une des dimensions la quantité possible d'information à extraire est réduite. Cette thèse a pour objectif de proposer une nouvelle approche pour utiliser en même temps les dimensions structurelle et compositionelle lors de la détection de communautés de façon telle que les groupes aient des noeuds similaires et bien connectés. Pour la mise en oeuvre de cette approche il faut d'abord une nouvelle définition de communauté qui prend en compte les deux dimensions présentées auparavant et ensuite un modèle nouveau de détection qui utilise cette définition, en trouvant des groupes de noeuds similaires et bien connectés. Le modèle commence par l'introduction de la notion de point de vue qui permet de diviser la dimension compositionelle pour analyser le réseau depuis différentes perspectives. Ensuite le modèle, en utilisant l'information compositionelle, influence le processus de détection de communautés qui intègre les deux dimensions du réseau. La dernière étape est la visualisation du graphe de communautés qui positionne les noeuds selon leur similarité structurelle et compositionelle, ce qui permet d'identifier des noeuds importants pour les interactions entre communautés.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00794759
Date10 December 2012
CreatorsCRUZ GOMEZ, Juan David
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds