Return to search

Algorithmes stochastiques pour la statistique robuste en grande dimension / Stochastic algorithms for robust statistics in high dimension

Cette thèse porte sur l'étude d'algorithmes stochastiques en grande dimension ainsi qu'à leur application en statistique robuste. Dans la suite, l'expression grande dimension pourra aussi bien signifier que la taille des échantillons étudiés est grande ou encore que les variables considérées sont à valeurs dans des espaces de grande dimension (pas nécessairement finie). Afin d'analyser ce type de données, il peut être avantageux de considérer des algorithmes qui soient rapides, qui ne nécessitent pas de stocker toutes les données, et qui permettent de mettre à jour facilement les estimations. Dans de grandes masses de données en grande dimension, la détection automatique de points atypiques est souvent délicate. Cependant, ces points, même s'ils sont peu nombreux, peuvent fortement perturber des indicateurs simples tels que la moyenne ou la covariance. On va se concentrer sur des estimateurs robustes, qui ne sont pas trop sensibles aux données atypiques. Dans une première partie, on s'intéresse à l'estimation récursive de la médiane géométrique, un indicateur de position robuste, et qui peut donc être préférée à la moyenne lorsqu'une partie des données étudiées est contaminée. Pour cela, on introduit un algorithme de Robbins-Monro ainsi que sa version moyennée, avant de construire des boules de confiance non asymptotiques et d'exhiber leurs vitesses de convergence $L^{p}$ et presque sûre.La deuxième partie traite de l'estimation de la "Median Covariation Matrix" (MCM), qui est un indicateur de dispersion robuste lié à la médiane, et qui, si la variable étudiée suit une loi symétrique, a les mêmes sous-espaces propres que la matrice de variance-covariance. Ces dernières propriétés rendent l'étude de la MCM particulièrement intéressante pour l'Analyse en Composantes Principales Robuste. On va donc introduire un algorithme itératif qui permet d'estimer simultanément la médiane géométrique et la MCM ainsi que les $q$ principaux vecteurs propres de cette dernière. On donne, dans un premier temps, la forte consistance des estimateurs de la MCM avant d'exhiber les vitesses de convergence en moyenne quadratique.Dans une troisième partie, en s'inspirant du travail effectué sur les estimateurs de la médiane et de la "Median Covariation Matrix", on exhibe les vitesses de convergence presque sûre et $L^{p}$ des algorithmes de gradient stochastiques et de leur version moyennée dans des espaces de Hilbert, avec des hypothèses moins restrictives que celles présentes dans la littérature. On présente alors deux applications en statistique robuste: estimation de quantiles géométriques et régression logistique robuste.Dans la dernière partie, on cherche à ajuster une sphère sur un nuage de points répartis autour d'une sphère complète où tronquée. Plus précisément, on considère une variable aléatoire ayant une distribution sphérique tronquée, et on cherche à estimer son centre ainsi que son rayon. Pour ce faire, on introduit un algorithme de gradient stochastique projeté et son moyenné. Sous des hypothèses raisonnables, on établit leurs vitesses de convergence en moyenne quadratique ainsi que la normalité asymptotique de l'algorithme moyenné. / This thesis focus on stochastic algorithms in high dimension as well as their application in robust statistics. In what follows, the expression high dimension may be used when the the size of the studied sample is large or when the variables we consider take values in high dimensional spaces (not necessarily finite). In order to analyze these kind of data, it can be interesting to consider algorithms which are fast, which do not need to store all the data, and which allow to update easily the estimates. In large sample of high dimensional data, outliers detection is often complicated. Nevertheless, these outliers, even if they are not many, can strongly disturb simple indicators like the mean and the covariance. We will focus on robust estimates, which are not too much sensitive to outliers.In a first part, we are interested in the recursive estimation of the geometric median, which is a robust indicator of location which can so be preferred to the mean when a part of the studied data is contaminated. For this purpose, we introduce a Robbins-Monro algorithm as well as its averaged version, before building non asymptotic confidence balls for these estimates, and exhibiting their $L^{p}$ and almost sure rates of convergence.In a second part, we focus on the estimation of the Median Covariation Matrix (MCM), which is a robust dispersion indicator linked to the geometric median. Furthermore, if the studied variable has a symmetric law, this indicator has the same eigenvectors as the covariance matrix. This last property represent a real interest to study the MCM, especially for Robust Principal Component Analysis. We so introduce a recursive algorithm which enables us to estimate simultaneously the geometric median, the MCM, and its $q$ main eigenvectors. We give, in a first time, the strong consistency of the estimators of the MCM, before exhibiting their rates of convergence in quadratic mean.In a third part, in the light of the work on the estimates of the median and of the Median Covariation Matrix, we exhibit the almost sure and $L^{p}$ rates of convergence of averaged stochastic gradient algorithms in Hilbert spaces, with less restrictive assumptions than in the literature. Then, two applications in robust statistics are given: estimation of the geometric quantiles and application in robust logistic regression.In the last part, we aim to fit a sphere on a noisy points cloud spread around a complete or truncated sphere. More precisely, we consider a random variable with a truncated spherical distribution, and we want to estimate its center as well as its radius. In this aim, we introduce a projected stochastic gradient algorithm and its averaged version. We establish the strong consistency of these estimators as well as their rates of convergence in quadratic mean. Finally, the asymptotic normality of the averaged algorithm is given.

Identiferoai:union.ndltd.org:theses.fr/2016DIJOS053
Date17 June 2016
CreatorsGodichon-Baggioni, Antoine
ContributorsDijon, Cardot, Hervé, Cénac, Peggy
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench, English
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds