Return to search

Um estudo sobre técnicas de equalização autodidata. / A study on blind equalization techniques.

Neste trabalho, investigam-se técnicas autodidatas baseadas em estatísticas de ordem superior, aplicadas à equalização de canais de comunicação. Inicialmente, obtém-se um intervalo do passo de adaptação que assegura a convergência do algoritmo do Módulo Constante com o gradiente exato. Algoritmos como o CMA (Constant Modulus Algorithm) e o SWA (Shalvi-Weinstein Algorithm) são revisitados e suas capacidades de tracking analisadas, utilizando-se uma relação de conservação de energia. Além disso, é proposto um algoritmo autodidata denominado AC-CMA (Accelerated Constant Modulus Algorithm) que utiliza a segunda derivada (“aceleração”) da estimativa dos coeficientes. Esse algoritmo pode apresentar um compromisso mais favorável entre complexidade computacional e velocidade de convergência que o CMA e o SWA. Esses resultados são estendidos para o caso multiusuário. Através de simulações, os algoritmos são comparados e as análises de convergência e tracking validadas. Considerando o DFE (Decision Feedback Equalizer) no caso monousuário com o critério do módulo constante, é proposto um algoritmo concorrente que evita soluções degeneradas e apresenta um desempenho melhor do que os existentes na literatura. Com o intuito de evitar propagação de erros, é proposta uma estrutura híbrida que utiliza uma rede neural recorrente na malha de realimentação. Resultados de simulações indicam que seu uso pode ser vantajoso para canais lineares e não-lineares. / The equalization of communication channels is addressed by using blind techniques based on higher order statistics. A step-size interval is obtained to ensure the convergence of Steepest-Descent Constant Modulus Algorithm. The Shalvi-Weinstein Algorithm (SWA) and Constant Modulus Algorithm (CMA) are revisited and their tracking capabilities are analyzed by using an energy conservation relation. Moreover, a novel blind algorithm named Accelerated Constant Modulus Algorithm (AC-CMA) is proposed. It adjusts the second derivative (“acceleration”) of the coefficient estimates and presents a more favorable compromise between computational complexity and convergence rate than CMA or SWA. These results are extended to the MIMO (Multiple-Input Multiple-Output) case. By means of simulations, the algorithms are compared and the convergence and tracking analysis are validated. The Decision Feedback Equalizer (DFE) is considered in the SISO (Single-Input Single-Output) case with the Constant Modulus criterion and a concurrent algorithm is proposed. It avoids degenerated solutions and shows better behavior than the others presented in the literature. In order to avoid error propagation, a hybrid DFE is also proposed. It includes a recurrent neural network in the feedback filter and may be advantageously used to equalize linear and nonlinear channels.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-01042005-214250
Date17 January 2005
CreatorsMagno Teófilo Madeira da Silva
ContributorsMaria das Dores dos Santos Miranda, Jose Carlos Moreira Bermudez, Phillip Mark Seymour Burt, Marcello Luiz Rodrigues de Campos, Vitor Heloiz Nascimento
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds