Neste trabalho, investigam-se técnicas autodidatas baseadas em estatísticas de ordem superior, aplicadas à equalização de canais de comunicação. Inicialmente, obtém-se um intervalo do passo de adaptação que assegura a convergência do algoritmo do Módulo Constante com o gradiente exato. Algoritmos como o CMA (Constant Modulus Algorithm) e o SWA (Shalvi-Weinstein Algorithm) são revisitados e suas capacidades de tracking analisadas, utilizando-se uma relação de conservação de energia. Além disso, é proposto um algoritmo autodidata denominado AC-CMA (Accelerated Constant Modulus Algorithm) que utiliza a segunda derivada (aceleração") da estimativa dos coeficientes. Esse algoritmo pode apresentar um compromisso mais favorável entre complexidade computacional e velocidade de convergência que o CMA e o SWA. Esses resultados são estendidos para o caso multiusuário. Através de simulações, os algoritmos são comparados e as análises de convergência e tracking validadas. Considerando o DFE (Decision Feedback Equalizer) no caso monousuário com o critério do módulo constante, é proposto um algoritmo concorrente que evita soluções degeneradas e apresenta um desempenho melhor do que os existentes na literatura. Com o intuito de evitar propagação de erros, é proposta uma estrutura híbrida que utiliza uma rede neural recorrente na malha de realimentação. Resultados de simulações indicam que seu uso pode ser vantajoso para canais lineares e não-lineares. / The equalization of communication channels is addressed by using blind techniques based on higher order statistics. A step-size interval is obtained to ensure the convergence of Steepest-Descent Constant Modulus Algorithm. The Shalvi-Weinstein Algorithm (SWA) and Constant Modulus Algorithm (CMA) are revisited and their tracking capabilities are analyzed by using an energy conservation relation. Moreover, a novel blind algorithm named Accelerated Constant Modulus Algorithm (AC-CMA) is proposed. It adjusts the second derivative (acceleration") of the coefficient estimates and presents a more favorable compromise between computational complexity and convergence rate than CMA or SWA. These results are extended to the MIMO (Multiple-Input Multiple-Output) case. By means of simulations, the algorithms are compared and the convergence and tracking analysis are validated. The Decision Feedback Equalizer (DFE) is considered in the SISO (Single-Input Single-Output) case with the Constant Modulus criterion and a concurrent algorithm is proposed. It avoids degenerated solutions and shows better behavior than the others presented in the literature. In order to avoid error propagation, a hybrid DFE is also proposed. It includes a recurrent neural network in the feedback filter and may be advantageously used to equalize linear and nonlinear channels.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-01042005-214250 |
Date | 17 January 2005 |
Creators | Silva, Magno Teófilo Madeira da |
Contributors | Miranda, Maria das Dores dos Santos |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds