Return to search

Estrat?gia de navega??o com planejamento din?mico e algoritmo gen?tico aplicada a rob?s m?veis terrestres

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-08-16T20:20:26Z
No. of bitstreams: 1
AtilaVarelaFerreiraMedeirosDeOliveira_DISSERT.pdf: 1603393 bytes, checksum: dca520d8a49b825f11ed063f8807d7f1 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-08-18T00:33:44Z (GMT) No. of bitstreams: 1
AtilaVarelaFerreiraMedeirosDeOliveira_DISSERT.pdf: 1603393 bytes, checksum: dca520d8a49b825f11ed063f8807d7f1 (MD5) / Made available in DSpace on 2016-08-18T00:33:44Z (GMT). No. of bitstreams: 1
AtilaVarelaFerreiraMedeirosDeOliveira_DISSERT.pdf: 1603393 bytes, checksum: dca520d8a49b825f11ed063f8807d7f1 (MD5)
Previous issue date: 2015-12-07 / Este trabalho prop?e uma nova estrat?gia de navega??o aut?noma assistida por algoritmo gen?tico com planejamento din?mico para rob?s m?veis terrestres, chamada DPNA-GA (Dynamic Planning Navigation Algorithm optimized with Genetic Algorithm). A estrat?gia foi aplicada em ambientes - tanto est?ticos, quanto din?micos - nos quais a localiza??o e o formato dos obst?culos n?o s?o previamente conhecidos. A cada evento de deslocamento, uma nova rota ? planejada atrav?s de um algoritmo que minimiza a dist?ncia entre o rob? e o objetivo e maximiza a dist?ncia em rela??o aos obst?culos. Utilizando um sensor de localiza??o espacial e um conjunto de sensores de dist?ncia, a estrat?gia de navega??o proposta foi capaz de planejar dinamicamente percursos ?timos livres de colis?o. Simula??es realizadas em diferentes ambientes demostraram que a t?cnica fornece um alto grau de flexibilidade e robustez. Para isso, foram aplicadas diversas varia??es de par?metros gen?ticos, tais como: taxa de cruzamento, tamanho da popula??o, dentre outros. Finalmente, os resultados das simula??es demonstram satisfatoriamente a efic?cia e robustez da t?cnica DPNA-GA, validando-a para aplica??es reais em rob?s m?veis terrestres. / This work proposes a new autonomous navigation strategy assisted by genetic algorithm
with dynamic planning for terrestrial mobile robots, called DPNA-GA (Dynamic Planning
Navigation Algorithm optimized with Genetic Algorithm). The strategy was applied in
environments - both static and dynamic - in which the location and shape of the obstacles is
not known in advance. In each shift event, a control algorithm minimizes the distance
between the robot and the object and maximizes the distance from the obstacles, rescheduling
the route. Using a spatial location sensor and a set of distance sensors, the proposed
navigation strategy is able to dynamically plan optimal collision-free paths. Simulations
performed in different environments demonstrated that the technique provides a high degree
of flexibility and robustness. For this, there were applied several variations of genetic
parameters such as: crossing rate, population size, among others. Finally, the simulation
results successfully demonstrate the effectiveness and robustness of DPNA-GA technique,
validating it for real applications in terrestrial mobile robots.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/21173
Date07 December 2015
CreatorsOliveira, ?tila Varela Ferreira Medeiros de
Contributors02099790469, http://lattes.cnpq.br/3475337353676349, D?ria Neto, Adri?o Duarte, 10749896434, http://lattes.cnpq.br/1987295209521433, Pedrosa, Diogo Pinheiro Fernandes, 02199024458, http://lattes.cnpq.br/3276436982330644, Lima J?nior, Francisco Chagas de, 75046105420, http://lattes.cnpq.br/9342041276186254, Fernandes, Marcelo Augusto Costa
PublisherUniversidade Federal do Rio Grande do Norte, PROGRAMA DE P?S-GRADUA??O EM ENGENHARIA EL?TRICA E DE COMPUTA??O, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds