O alinhamento de seqüências biológicas é uma operação básica em Bioinformática, já que serve como base para outros processos como, por exemplo, a determinação da estrutura tridimensional das proteínas. Dada a grande quantidade de dados presentes nas seqüencias, são usadas técnicas matemáticas e de computação para realizar esta tarefa. Tradicionalmente, o Problema de Alinhamento de Seqüências Biológicas é formulado como um problema de otimização de objetivo simples, onde alinhamento de maior semelhança, conforme um esquema de pontuação, é procurado. A Otimização Multi-Objetivo aborda os problemas de otimização que possuem vários critérios a serem atingidos. Para este tipo de problema, existe um conjunto de soluções que representam um "compromiso" entre os objetivos. Uma técnica que se aplica com sucesso neste contexto são os Algoritmos Evolutivos, inspirados na Teoria da Evolução de Darwin, que trabalham com uma população de soluções que vão evoluindo até atingirem um critério de convergência ou de parada. Este trabalho formula o Problema de Alinhamento de Seqüências Biológicas como um Problema de Otimização Multi-Objetivo, para encontrar um conjunto de soluções que representem um compromisso entre a extensão e a qualidade das soluções. Aplicou-se vários modelos de Algoritmos Evolutivos para Otimização Multi-Objetivo. O desempenho de cada modelo foi avaliado por métricas de performance encontradas na literatura. / The Biological Sequence Alignment is a basic operation in Bioinformatics since it serves as a basis for other processes, i.e. determination of the protein's three-dimensional structure. Due to the large amount of data involved, mathematical and computational methods have been used to solve this problem. Traditionally, the Biological Alignment Sequence Problem is formulated as a single optimization problem. Each solution has a score that reflects the similarity between sequences. Then, the optimization process looks for the best score solution. The Multi-Objective Optimization solves problems with multiple objectives that must be reached. Frequently, there is a solution set that represents a trade-off between the objectives. Evolutionary Algorithms, which are inspired by Darwin's Evolution Theory, have been applied with success in solving this kind of problems. This work formulates the Biological Sequence Alignment as a Multi-Objective Optimization Problem in order to find a set of solutions that represent a trade-off between the extension and the quality of the solutions. Several models of Evolutionary Algorithms for Multi-Objetive Optimization have been applied and were evaluated using several performance metrics found in the literature.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-09052003-215914 |
Date | 26 February 2003 |
Creators | Ticona, Waldo Gonzalo Cancino |
Contributors | Liang, Zhao |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.003 seconds