Return to search

Biphenolate and cyclopentadienyl-derived complexes of zirconium and titanium as catalysts for the polymerisation of alpha olefins

M.Sc. / An annual production of approximately 46 million metric tons of polyolefins worldwide, emphasizes the industrial importance of this product and the polymerisation process. Olefins are the basic building block of the petrochemical industry and are therefore readily available and cheap. Reactivity of olefins decreases from ethylene to propylene to 1-octene and makes the study of polymerisation catalysts more complex, seeing that the activity of a catalyst differs from monomer to monomer. In this study zirconocene complexes with bridged cyclopentadienyl ligands have been prepared and investigated as , possible catalysts for the polymerisation of higher aolefins. Fulvenes have been reductively coupled and used as ligands for zirconium complexes. Steric bulk of the substituents on the ligand have been increased and changes in the polymeric products have been studied. The tacticty, endgroups and chain lengths of the polyolefins have been investigated. There is currently a considerable interest in the development of 'non-metallocene' catalysts as alternatives for the polymerisation and oligomerisation of a-olefins. Chelating diamide complexes of Group 4 metals have been the focus of much attention and these compounds have shown moderate to high reactivity. However, only a few examples of the corresponding chelating alkoxides are known. In this study, alkoxide complexes of zirconium and titanium have been prepared with Schiff bases as ligands. These complexes have been evaluated as polymerisation catalysts and the products have been studied. The titanium complexes were more active than the zirconium analogues. The narrow molecular weight distribution of the polyolefins gave evidence that these catalysts are single-sited catalysts.

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:uj/uj:3459
Date04 September 2012
CreatorsVan Zyl, Aletta
Source SetsSouth African National ETD Portal
Detected LanguageEnglish
TypeThesis

Page generated in 0.0278 seconds