A bactéria fitopatogênica Xylella fastidiosa é o agente etiológico da Clorose Variegada dos Citros (CVC), que causa perdas anuais estimadas em US$ 100 milhões no Brasil. Durante o processo infeccioso, a geração extracelular de espécies ativas de oxigênio é um dos principais mecanismos de defesa da planta contra o patógeno. Em contrapartida, para se defender do estresse oxidativo imposto pelo hospedeiro, os fitopatógenos possuem mecanismos de defesa que incluem enzimas antioxidantes, como as peroxirredoxinas, alquil hidroperóxido redutase subunidade C (AhpC) e proteína comigratória com bacterioferritina (Bcp). As peroxirredoxinas são proteínas que utilizam suas cisteínas ativas para catalisar a redução de hidroperóxidos. Por análise proteômica, os produtos dos genes ahpc e bcp foram identificados no extrato celular protéico de X. fastidiosa (Smolka e col., 2003). Com o intuito de caracterizar funcional e estruturalmente as proteínas AhpC e Bcp de X. fastidiosa, clonamos e expressamos seus respectivos genes em Escherichia coli e purificamos as proteínas por cromatografia de afinidade a níquel. As proteínas recombinantes apresentaram atividade dependente de tiól de redução de peróxido de hidrogênio e hidroperóxidos orgânicos. A atividade peroxidase da AhpC e Bcp são dependentes, respectivamente, de alquil hidroperóxido redutase subunidade F (AhpF) e do sistema tiorredoxina. Paradoxalmente, a flavoproteína AhpF possui atividade NAD(P)H oxidase, que resulta na produção de peróxido de hidrogênio. As constantes de segunda ordem da reação das proteínas com peróxido de hidrogênio (da ordem de 107 M-1.s-1), determinadas pelo ensaio de cinética competitiva com peroxidase de raiz forte, indicam que ambas possuem atividades peroxidase equivalentes às apresentadas por glutationa peroxidases dependentes de selênio e catalases, ao contrário do descrito na literatura. Por SDS-PAGE não-redutor e pela quantificação de cisteínas livres por DTNB, verificamos que as proteínas possuem mecanismos catalíticos distintos: AhpC é uma 2-Cys Prx típica (com formação de ponte dissulfeto intermolecular), enquanto Bcp é uma 2-Cys Prx atípica (com formação de ponte dissulfeto intramolecular). Para AhpC, a atividade catalítica envolve as cisteínas conservadas (Cys-47 e Cys-165), em contraste, apenas através de estudos de mutação sítio-dirigida e espectrometria de massas conseguimos identificar os resíduos de cisteínas envolvidos na atividade catalítica da Bcp (Cys-47 e Cys-83). A caracterização estrutural de AhpC por cromatografia de exclusão molecular e espalhamento dinâmico de luz mostram que a proteína nativa é um decâmero estável, independentemente do estado de oxidação de suas cisteínas. A caracterização da estrutura cristalográfica de Bcp C47S, inédita para 2-Cys Prx atípicas que possuem as cisteínas ativas separadas por 35 aminoácidos, indica que a proteína possui o enovelamento característico das peroxirredoxinas e que as cisteínas ativas estão localizadas a uma distância média de 12,4 Å. Baseado em dicroísmo circular, apresentamos dados que indicam que a aproximação das cisteínas deve envolver um significativo rearranjo estrutural, que provavelmente se inicia com a formação do intermediário ácido sulfênico na cisteína peroxidásica (Cys-47). Assim, conseguimos elucidar o papel catalítico dessas proteínas, bem como identificar seus sistemas redutores, obtendo informações que podem ser relevantes para o entendimento do mecanismo da patogenicidade da X. fastidiosa. Os resultados apresentados neste trabalho podem contribuir para o desenvolvimento de novas técnicas de controle de praga para a doença CVC em citrus e outras que envolvam a bactéria X. fastidiosa. / The phytopathogenic bacterium Xylella fastidiosa is the etiological agent of Citrus Variegated Chlorosis (CVC) that causes losses of about 100 millions dollars per year in Brazil. During infection, reactive oxygen species play a central role in plant pathogen defense. To survive under oxidative stress imposed by the host, microorganisms express antioxidant proteins, including the peroxiredoxins alkyl hydroperoxide reductase subunit C (AhpC) and bacterioferritin comigratory protein (Bcp). Peroxiredoxins are peroxidases, which rely on an activated cysteine residue to catalyze the reduction of hydroperoxides. By proteome analysis, Smolka et al. (2003) identified the products of ahpc and bcp genes present in whole cell extract of X. fastidiosa. To characterize the function and structure of AhpC and Bcp protein, their genes were cloned in Escherichia coli and the corresponding proteins purified by nickel affinity chromatography. Recombinant proteins presented thiol-dependent peroxidase activity against hydrogen peroxide and organic hydroperoxides. AhpC and Bcp peroxidase activities are dependent on alkyl hydroperoxide reductase subunit F (AhpF), and on thioredoxin system, respectively. Paradoxically, AhpF flavoenzyme possesses hydrogen peroxide-forming oxidase activity. Contrary to classical assumptions, competitive kinetics employing horseradish peroxidase assays showed that the second-order rate constants of AhpC and Bcp reaction with hydrogen peroxide are in the order of 107 M-1.s-1, as fast as the activity of selenium-dependent glutathione peroxidases and catalases. Non-reducing SDS-PAGE and cysteine quantification using DTNB indicated different peroxidasic mechanisms: AhpC is a typical 2-Cys peroxiredoxin (with intermolecular disulfide bond formation), while Bcp is an atypical 2-Cys peroxiredoxin (with intramolecular disulfide bond formation). In contrast to the well-conserved AhpC cysteines responsible for the peroxidase activity (Cys-47 and Cys-165), only through site-specific mutagenesis and mass spectrometry we could identified the cysteine residues involved in the Bcp peroxidase activity (Cys-47 and Cys-83). Structural characterization by size exclusion chromatography and dynamic light scattering revealed that AhpC native protein forms stable and redox state independent decamers. The crystal structure of Bcp C47S, the first 2-Cys Prx with a 35-residue between the active cysteines ever characterized, shows that protein contains the common fold of peroxiredoxins and that active cysteines lies ~12.4 Å away one from the other. Based on circular dichroism, we presented data indicating that disulfide bond formation may require significant conformational changes, which probably is triggered by the peroxidatic cysteine oxidation to sulfenic acid. In conclusion, we elucidated the catalytic mechanisms and reduction systems of AhpC and Bcp proteins that may help to understand the pathogenicity mechanism of X. fastidiosa. These results can contribute to the development of plague control methods against X. fastidiosa.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-14082009-101947 |
Date | 05 August 2009 |
Creators | Bruno Brasil Horta |
Contributors | Luis Eduardo Soares Netto, Ohara Augusto, Shaker Chuck Farah, Fábio Cesar Gozzo, Sandro Roberto Marana |
Publisher | Universidade de São Paulo, Ciências Biológicas (Biologia Genética), USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0032 seconds