Return to search

Study of oxidation mechanisms of zirconium alloys by electron microscopy

The current work is part of the EPSRC MUZIC project, which established the collaboration among several universities to carry out a multidiscipline study on the breakaway oxidation of zirconium alloys. The overall goal of the project is to further understand the mechanisms of the oxidation and breakaway process of zirconium alloys. This thesis describes the nano/micro-structural study and nano-analysis of the corroded zirconium alloys using up-to-date TEM and 3D focused ion beam (FIB) slicing and reconstruction techniques. The work mainly focused on the characterization of ZIRLO. The oxide morphology in general comprises an inner columnar layer and an outer equiaxed layer, except for a post-second transition oxide grown on a Zr-Nb-Ti test alloy with a very poor corrosion resistance, which exhibits generally only equiaxed grains throughout the whole oxide scale. Detailed investigation reveals oxides in a slower oxidation stage exhibit better developed columnar grain structure. All the oxides, independent of different corrosion stages and alloy types, contain predominantly monoclinic oxide and a small amount of tetragonal oxide. Defects at different length scales were examined. In stead of a sudden burst of crack nucleation at the kinetic transition, a gradual introduction of cracks parallel to the metal/oxide interface throughout the pre-transition stage is found, suggesting no direction correlation between the formation of cracks and the transition. Besides cracks, the oxide also contains different forms of nano-porosity: isolated pores of 1-3 nm or interconnected pores at grain boundaries. The density of interconnected porosity, especially those along the oxide growth direction, increases towards the oxide surface, evolving over time. It is suggested that the kinetic transition is related to the development of an interconnected porosity down to the metal/oxide interface, providing easy pathways for the transportation of oxidation species. The metal-oxide interface has a wavy morphology both in the micrometer and nanometer scale. The roughness develops to a maximum just before the first kinetic transition. An intermediate suboxide layer with complex 3D morphology between the bulk oxide and the metal substrate is found. Quantitative EELS analysis shows the composition of this layer to be 40-50 at. % oxygen. The suboxide appears to develop in thickness with increasing oxidation time for the pre-transition oxides, while is very thin or absent in the post-, and post-second transition oxides. In the suboxide region, multiple phases including &alpha;-Zr, &omega;-Zr, tetragonal oxide and a phase with an unidentified structure were found, suggesting different structures can coexist in the suboxide layer. Second-phase particles (SSPs) of &beta;-Nb and hexagonal Zr(Fe,Nb)<sub>2</sub> types were found in ZIRLO samples and FCC Zr(Fe,Cr)<sub>2</sub> was the predominant type in Zircaloy-4. The SPPs showed delayed oxidation compared to surrounding Zr. In ZIRLO, those containing high Fe contents were found to be oxidized and transform into an amorphous state much earlier than &beta;-Nb. Hydrides of different types (&gamma;, &sigma; and &epsilon;) were observed in the metal and metal/oxide region for both Zircaloy-4 and ZIRLO samples. A higher density of hydrides was seen in post-transition oxides of ZIRLO than in pre-transition oxides.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:543532
Date January 2011
CreatorsNi, Na
ContributorsGrovenor, Chris ; Sykes, John ; Lozano-perez, Sergio
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:c60cdca2-e576-414a-8a10-eb3a60264998

Page generated in 0.0016 seconds