Return to search

High-Temperature Corrosion of Aluminum Alloys: Oxide-Alloy Interactions and Sulfur Interface Chemistry

The spallation of aluminum, chromium, and iron oxide scales is a chronic problem that critically impacts technological applications like aerospace, power plant operation, catalysis, petrochemical industry, and the fabrication of composite materials. The presence of interfacial impurities, mainly sulfur, has been reported to accelerate spallation, thereby promoting the high-temperature corrosion of metals and alloys. The precise mechanism for sulfur-induced destruction of oxides, however, is ambiguous. The objective of the present research is to elucidate the microscopic mechanism for the high-temperature corrosion of aluminum alloys in the presence of sulfur. Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and scanning tunneling microscopy (STM) studies were conducted under ultrahigh vacuum (UHV) conditions on oxidized sulfur-free and sulfur-modified Al/Fe and Ni3Al(111). Evaporative deposition of aluminum onto a sulfur-covered iron surface results in the insertion of aluminum between the sulfur adlayer and the substrate, producing an Fe-Al-S interface. Aluminum oxidation at 300 K is retarded in the presence of sulfur. Oxide destabilization, and the formation of metallic aluminum are observed at temperatures > 600 K when sulfur is located at the Al2O3-Fe interface, while the sulfur-free interface is stable up to 900 K. In contrast, the thermal stability (up to at least 1100 K) of the Al2O3 formed on an Ni3Al(111) surface is unaffected by sulfur. Sulfur remains at the oxide-Ni3Al(111) interface after oxidation at 300 K. During annealing, aluminum segregation to the g ยข -Al2O3-Ni3Al(111) interface occurs, coincident with the removal of sulfur from the interfacial region. A comparison of the results observed for the Al2O3/Fe and Al2O3/Ni3Al systems indicates that the high-temperature stability of Al2O3 films on aluminum alloys is connected with the concentration of aluminum in the alloy.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc2739
Date12 1900
CreatorsAddepalli, Swarnagowri
ContributorsKelber, Jeffry A., Acree, William E. (William Eugene), Chyan, Oliver M. R., Richmond, Michael, Golden, David E.
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Copyright, Addepalli, Swarnagowri, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0021 seconds