Return to search

Um modelo de seleção de carteiras de ações baseado em otimização convexa online

Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-05-23T12:11:21Z
No. of bitstreams: 1
joaodanielmadureirayamim.pdf: 873324 bytes, checksum: 5025e3943c3bb2f1e1f19c55767c683e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-05-24T17:47:46Z (GMT) No. of bitstreams: 1
joaodanielmadureirayamim.pdf: 873324 bytes, checksum: 5025e3943c3bb2f1e1f19c55767c683e (MD5) / Made available in DSpace on 2018-05-24T17:47:46Z (GMT). No. of bitstreams: 1
joaodanielmadureirayamim.pdf: 873324 bytes, checksum: 5025e3943c3bb2f1e1f19c55767c683e (MD5)
Previous issue date: 2018-02-23 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Desde o trabalho seminal de Harry Markowitz, em 1952, que iniciou a moderna te-oria de carteiras, as estratégias de alocação de portfólio foram intensamente discutidas na literatura. Com o desenvolvimento de técnicas de otimização online, os algoritmos de aprendizado dinâmico se mostraram uma abordagem efetiva para construir portfólios (COVER, 1991; ARGAWAL et al., 2006). No entanto, poucos trabalhos conectam a lite-ratura tradicional, evoluída a partir do trabalho de Markowitz (1952) com a literatura de otimização online, que evoluiu a partir do trabalho de Cover (1991). O principal objetivo deste trabalho é implementar técnicas de otimização convexa online para: (i) executar estratégias de alocação de portfólio; (ii) conectar esses algoritmos com fatores risco usados em metodologias tradicionais. Dois métodos de algoritmos online foram implementados e adaptados, o Online Gradient Descendent (OGD) e o Online Newton Step (ONS). Além disso, duas novas versões para o algoritmo OGD são propostas para controlar o risco em carteiras. O primeiro, busca limitar o investimento máximo para ações e, o segundo, visa controlar o /3 das carteiras. Ambas as estratégias foram comparadas com o Uniform Constant Rebalanced Portfolio (UCRP) e o Dow Jones Industrial Index (DJIA). Foram utilizados dados do DJIA de março de 1987 até fevereiro de 2009 com observações se-manais. O algoritmo OGD apresentou o maior retorno acumulado entre as estratégias testadas. Ambos os algoritmos (OGD e ONS) apresentaram melhor desempenho do que o UCRP e DJIA ao longo do período. Além disso, o mecanismo de controle de risco pro-posto provou ser uma ferramenta útil para melhorar os resultados relacionados ao valor em risco (VaR) e ao valor condicional em risco (CVaR) das carteiras. / Since the seminal work of Harry Markowitz (1952), which initiated the modern theory of portfolios, the strategies of portfolio allocation were extensively discussed in economic literature. With the development of online optimization techniques, dynamic learning algorithms emerged as an effective approach to develop investment portfolios (COVER, 1991; ARGAWAL et al., 2006). However, there are few attempts aiming to connect the traditional literature of portfolio investment, which evolved based on Markowitz (1952) work, with the recent online methods, developed from Cover (1991). The main objec-tive of this work is to implement online convex optimization techniques to: (i) perform strategies of portfolio allocation; (ii) couple these algorithms with risk factors used in traditional models. Two methods of online algorithms were implemented and adapted, the Online Gradient Descendent (OGD) and the Online Newton Step (ONS). Besides, two new versions for the OGD algorithm are proposed in order to control risk in portfolios. The first one, seeks to limit maximum investment for stocks and, the second, aims to keep control of the /3 of portfolios. Both strategies were compared with the Uniform Constant Re-Balanced Portfolio (UCRP) and the Dow Jones Industrial Index (DJIA). Data from weekly observations of DJIA from March 1987 until February 2009 are used. The OGD algorithm presented the best accumulated return among all strategies. Both algorithms (OGD and ONS) performed better than the UCRP and DJIA index. Furthermore, the risk control mechanism proposed proved to be an useful tool in order to improve results related to the Value at Risk (VaR) and Conditional Value at Risk (CVaR) of the portfolios.

Identiferoai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/6816
Date23 February 2018
CreatorsYamim, João Daniel Madureira
ContributorsBorges, Carlos Cristiano Hasenclever, Fonseca Neto, Raul, Perobelli, Fernanda Finotti Cordeiro, Oliveira, Fabrízzio Condé de
PublisherUniversidade Federal de Juiz de Fora (UFJF), Programa de Pós-graduação em Ciência da Computação, UFJF, Brasil, ICE – Instituto de Ciências Exatas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0026 seconds