L’objectif de cette thèse est de proposer un Alphabet Structural (AS) permettant une caractérisation fine et précise des structures tridimensionnelles (3D) des protéines, à l’aide des chaînes de Markov cachées (HMM) qui permettent de prendre en compte la logique issue de l’enchaînement des fragments structuraux en intégrant l’augmentation des conformations 3D des structures protéiques désormais disponibles dans la banque de données de la Protein Data Bank (PDB). Nous proposons dans cette thèse un nouvel alphabet, améliorant l’alphabet structural HMM-SA27,appelé SAFlex (Structural Alphabet Flexibility), dans le but de prendre en compte l’incertitude des données (données manquantes dans les fichiers PDB) et la redondance des structures protéiques. Le nouvel alphabet structural SAFlex obtenu propose donc un nouveau modèle d’encodage rigoureux et robuste. Cet encodage permet de prendre en compte l’incertitude des données en proposant trois options d’encodages : le Maximum a posteriori (MAP), la distribution marginale a posteriori (POST)et le nombre effectif de lettres à chaque position donnée (NEFF). SAFlex fournit également un encodage consensus à partir de différentes réplications (chaînes multiples, monomères et homomères) d’une même protéine. Il permet ainsi la détection de la variabilité structurale entre celles-ci. Les avancées méthodologiques ainsi que l’obtention de l’alphabet SAFlex constituent les contributions principales de ce travail de thèse. Nous présentons aussi le nouveau parser de la PDB (SAFlex-PDB) et nous démontrons que notre parser a un intérêt aussi bien sur le plan qualitatif (détection de diverses erreurs)que quantitatif (rapidité et parallélisation) en le comparant avec deux autres parsers très connus dans le domaine (Biopython et BioJava). Nous proposons également à la communauté scientifique un site web mettant en ligne ce nouvel alphabet structural SAFlex. Ce site web représente la contribution concrète de cette thèse alors que le parser SAFlex-PDB représente une contribution importante pour le fonctionnement du site web proposé. Cette caractérisation précise des conformations 3D et la prise en compte de la redondance des informations 3D disponibles, fournies par SAFlex, a en effet un impact très important pour la modélisation de la conformation et de la variabilité des structures 3D, des boucles protéiques et des régions d’interface avec différents partenaires, impliqués dans la fonction des protéines / The purpose of this PhD is to provide a Structural Alphabet (SA) for more accurate characterization of protein three-dimensional (3D) structures as well as integrating the increasing protein 3D structure information currently available in the Protein Data Bank (PDB). The SA also takes into consideration the logic behind the structural fragments sequence by using the hidden Markov Model (HMM). In this PhD, we describe a new structural alphabet, improving the existing HMM-SA27 structural alphabet, called SAFlex (Structural Alphabet Flexibility), in order to take into account the uncertainty of data (missing data in PDB files) and the redundancy of protein structures. The new SAFlex structural alphabet obtained therefore offers a new, rigorous and robust encoding model. This encoding takes into account the encoding uncertainty by providing three encoding options: the maximum a posteriori (MAP), the marginal posterior distribution (POST), and the effective number of letters at each given position (NEFF). SAFlex also provides and builds a consensus encoding from different replicates (multiple chains, monomers and several homomers) of a single protein. It thus allows the detection of structural variability between different chains. The methodological advances and the achievement of the SAFlex alphabet are the main contributions of this PhD. We also present the new PDB parser(SAFlex-PDB) and we demonstrate that our parser is therefore interesting both qualitative (detection of various errors) and quantitative terms (program optimization and parallelization) by comparing it with two other parsers well-known in the area of Bioinformatics (Biopython and BioJava). The SAFlex structural alphabet is being made available to the scientific community by providing a website. The SAFlex web server represents the concrete contribution of this PhD while the SAFlex-PDB parser represents an important contribution to the proper function of the proposed website. Here, we describe the functions and the interfaces of the SAFlex web server. The SAFlex can be used in various fashions for a protein tertiary structure of a given PDB format file; it can be used for encoding the 3D structure, identifying and predicting missing data. Hence, it is the only alphabet able to encode and predict the missing data in a 3D protein structure to date. Finally, these improvements; are promising to explore increasing protein redundancy data and obtain useful quantification of their flexibility
Identifer | oai:union.ndltd.org:theses.fr/2018USPCC084 |
Date | 29 January 2018 |
Creators | Sekhi, Ikram |
Contributors | Sorbonne Paris Cité, Camproux, Anne-Claude, Nuel, Grégory |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0033 seconds