Return to search

Functional Analysis of Secondary Metabolite Biosynthesis-Related Genes in Alternaria brassicicola

Alternaria brassicicola is a necrotrophic pathogen that causes black spot disease on virtually all cultivated Brassicas, A. brassicicola is renowned for its ability to prodigiously produce secondary metabolites. To test the hypothesis that secondary metabolites produced by A. brassicicola contribute to pathogenicity, we identified seven nonribosomal peptide synthetases (NPSs) and 10 polyketide synthases (PKSs) in the A. brassicicola genome. The phenotype resulting from knockout mutations of each PKS and NPS gene was investigated with an emphasis on discovery of fungal virulence factors. A highly efficient gene disruption method using a short linear double stranded DNA construct with minimal elements was developed, optimized, and used to functionally disrupt all NPS and PKS genes in A. brassicicola. Three NPS and two PKS genes, and one NPS-like gene appeared to be virulence factors based upon reduced lesion development of each mutant on inoculated green cabbage and Arabidopsis compared with the wild-type strain. Furthermore some of the KO mutants exhibited developmental phenotypic changes in pigmentation and conidiogenesis. To further characterize the roles of several genes of interest in A. brassicicola development and pathogenesis, the genes AbNPS2, AbPKS9, and NPS-like tmpL were selected for in-depth functional analysis. We provide substantial evidence that the AbNPS2-associated metabolite is involved in conidial cell wall construction, possibly as an anchor connecting two cell wall layers. We also characterized a biosynthetic gene cluster harboring the AbPKS9 gene and demonstrated that this cluster is responsible for the biosynthesis of depudecin, an inhibitor of histone deacetylases and a minor virulence factor. Finally, we demonstrated that a NPS-like protein named TmpL is involved in a filamentous fungi-specific mechanism for regulating levels of intracellular reactive oxygen species during conidiation and pathogenesis in both plant and animal pathogenic fungi. Collectively our results indicate that small molecule nonribosomal peptides and polyketides in A. brassicicola play diverse, but also fundamental, roles in fungal development and pathogenesis. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/39452
Date07 October 2009
CreatorsKim, Kwang Hyung
ContributorsBiology, Lawrence, Christopher B., McDowell, John B., Li, Liwu, Tholl, Dorothea
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationKim_KH_D_2009.pdf

Page generated in 0.0022 seconds