Water scarcity combined with an increasing world population is creating pressure to develop new methods for producing food using less water. Rice is a staple crop with a very high water demand. This study examined the success in maintaining yields under water-saving irrigation management, including alternate wetting and drying (AWD). A meta-analysis was conducted examining yields under various types of water-saving irrigation compared to control plots kept under continuous flooding. The results indicated that yields can indeed be maintained under AWD as long as the field water level during the dry cycles is not allowed to drop below -15 cm, or the soil water potential is not allowed to drop below -10 kPa. Yields can likewise be maintained using irrigation intervals of 2 days, but the variability increases. Midseason drainage was not found to affect yield, though non-flooded conditions when maintained throughout most of the crop season appeared to be detrimental to yields. Increasingly negative effects on yields were found when increasing the severity of AWD or the length of the drainage periods. Potential benefits and drawbacks of water-saving irrigation management with regards to greenhouse gas emissions, soil quality and nutrient losses were discussed to highlight the complexity of the challenges of saving water in rice production.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-146786 |
Date | January 2017 |
Creators | Åberg, Amanda |
Publisher | Stockholms universitet, Institutionen för naturgeografi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.1853 seconds