Return to search

Response surface analysis of trapped-vortex augmented airfoils

<p> In this study, the effect of a passive trapped-vortex cell on lift to drag (L/D) ratio of an FFA-W3-301 airfoil is studied. The upper surface of the airfoil was modified to incorporate a cavity defined by seven parameters. The L/D ratio of the airfoil is modeled using a radial basis function metamodel. This model is used to find the optimal design parameter values that give the highest L/D. The numerical results indicate that the L/D ratio is most sensitive to the position on an airfoil&rsquo;s upper surface at which the cavity starts, the position of the end point of the cavity, and the vertical distance of the cavity end point relative to the airfoil surface. The L/D ratio can be improved by locating the cavity start point at the point of separation for a particular angle of attack. The optimal cavity shape (o19_aXX) is also tested for a NACA0024 airfoil.</p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:1604198
Date01 December 2015
CreatorsZope, Anup Devidas
PublisherMississippi State University
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0023 seconds