Return to search

Cross-species characterisation of alternative splicing patterns

Alternative splicing is a common post-transcriptional process in eukaryote organisms by which a single gene can produce more than one distinct transcript. First discovered in the late 1970s, alternative splicing has been the focus of intense attention after the release of the human genome draft revealed a lower than expected gene number. Almost all human protein coding genes are now known to be alternatively spliced. However, how alternative splicing in humans and other well studied model organisms compares to other less characterised taxa such as protists and fungi or what is the functional role of alternative splicing remains poorly understood. Here I analyse alternative splicing in dozens of species using millions of partial transcript sequences ESTs. By applying a transcript normalisation method I showed that alternative splicing in protists and fungi is higher than previously reported and highly variable. I further observed that in representatives of both taxa, associations with translation are overrepresented among alternatively spliced genes. However, no evidence for a relationship between alternative splicing and complex phenotypes was found. Taking human lice as a model I explored the role of alternative splicing in the evolution of phenotypic variants. I found that, despite the fact that the transcriptome profiles of head and body lice are nearly identical, there are markedly differences in alternative splicing patterns. Development related functional associations were found to be enriched among genes with body lice specific alternative splicing events but not in head lice consistent with a scenario of differential patterns of alternative splicing contributing to the phenotypic innovations as human lice adapted to life in human clothing. I further explore the functional relevance of alternative splicing and its possible role in driving genomic innovations even preceding events of gene duplication. Together the work presented show that alternative splicing is widespread among previously understudied fungi and protist species and provide insights on its role in species adaptation to novel environments in using human lice as a model.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:636519
Date January 2014
CreatorsTovar-Corona, Jaime M.
ContributorsUrrutia, Araxi
PublisherUniversity of Bath
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation

Page generated in 0.0017 seconds