<div>The aviation industry is continuously growing amid tight restrictions on global emission</div><div>reductions. Alternative aviation fuels have gained attention and developed to replace the</div><div>conventional petroleum-derived aviation fuels. The replacement of conventional fuels with</div><div>alternative fuels, which are composed solely of hydrocarbons (non-petroleum), can mitigate</div><div>impacts on the environment and diversify the energy supply, potentially reducing fuel costs.</div><div>To ensure the performance of alternative fuels, extensive laboratory and full-scale engine</div><div>testings are required, thereby a lengthy and expensive process. The National Jet Fuel Combustion</div><div>Program (NJFCP) proposed a plan to reduce this certification process time and</div><div>the cost dramatically by implementing a computational model in the process, which can be</div><div>replaced with some of the testings. This requires an understanding of the influence of chemical/</div><div>physical properties of alternative fuels on combustion performance. The main objective</div><div>of this work is to investigate the spray characteristics of alternative aviation fuels compared</div><div>to that of conventional aviation fuels, which have been characterized by different physical</div><div>liquid properties at different gas turbine-relevant conditions.</div><div>The experimental work focuses on the spray characteristics of standard and alternative</div><div>aviation fuels at three operating conditions such as near lean blowout (LBO), cold engine</div><div>start, and high ambient pressure conditions. The spray generated by a hybrid pressureswirl</div><div>airblast atomizer was investigated by measuring the drop size and drop velocity at</div><div>a different axial distance downstream of the injector using a phase Doppler anemometry</div><div>(PDA) measurement system. This provided an approximate trajectory of the largest droplet</div><div>as it traveled down from the injector. At LBO conditions, the trend of decreasing drop size</div><div>and increasing drop velocity with an increase in gas pressure drop was observed for both</div><div>conventional (A-2) and alternative aviation fuels (C-1, C-5, C-7, and C-8), while the effect of</div><div>fuel injection pressure on the mean drop size and drop velocity was observed to be limited.</div><div>Moreover, the high-speed shadowgraph images were also taken to investigate the effect of</div><div>the pressure drop and fuel injection pressures on the cone angles. Their effects were found</div><div>to be limited on the cone angle.</div><div><div>The spray characteristics of standard (A-2 and A-3) and alternative (C-3) fuels were</div><div>investigated at engine cold-start conditions. At such a crucial condition, sufficient atomization</div><div>needs to be maintained to operate the engine properly. The effect of fuel properties,</div><div>especially the viscosity, was investigated on spray drop size and drop velocity using both</div><div>conventional and alternative aviation fuels. The effect of fuel viscosity was found to be minimal</div><div>and dominated by the effect of the surface tension, even though it showed a weak trend</div><div>of increasing drop size with increasing surface tension. The higher swirler pressure drop</div><div>reduced the drop size and increased drop velocity due to greater inertial force of the gas for</div><div>both conventional and alternative aviation fuels at the cold start condition. However, the</div><div>effect of pressure drop was observed to be reduced at cold start condition compared to the</div><div>results from the LBO condition.</div><div>The final aspect of experimental work focuses on the effect of ambient pressures on the</div><div>spray characteristics for both conventional (A-2) and alternative (C-5) aviation fuels. Advanced</div><div>aviation technology, especially in turbomachinery, has resulted in a greater pressure</div><div>ratio in the compressor; therefore, greater pressure in combustors for better thermal efficiency.</div><div>The effect of ambient pressure on drop size, drop velocity, and spray cone angle was</div><div>investigated using the PDA system and simultaneous Planar Laser-Induced Fluorescence</div><div>(PLIF) and Mie scattering measurement. A significant reduction in mean drop size was</div><div>observed with increasing ambient pressure, up to 5 bar. However, the reduction in the mean</div><div>drop size was found to be limited with a further increase in the ambient pressure. The effect</div><div>of the pressure drop across the swirler was observed to be significant at ambient pressure of</div><div>5 bar. The spray cone angle estimation at near the swirler exit and at 25.4 mm downstream</div><div>from the swirler exit plane using instantaneous Mie images was found to be independent of</div><div>ambient pressure. However, the cone angle at measurement plane of 18 mm in the spray</div><div>was observed to increase with increasing ambient pressure due to entrainment of smaller</div><div>droplets at higher ambient pressure. Furthermore, the fuel droplet and vapor distribution in</div><div>the spray were imaged and identified by comparing instantaneous PLIF and Mie images.</div><div>Lastly, a semi-empirical model was also developed using a phenomenological three-step</div><div>approach for the atomization process of the hybrid pressure-swirl airblast atomizer. This</div><div>model includes three sub-models: pressure-swirl spray droplet formation, droplet impingement, and film formation, and aerodynamic breakup. The model predicted drop sizes as a</div><div>function of ALR, atomizing gas velocity, surface tension, density, and ligament length and</div><div>diameter and successfully demonstrated the drop size trend observed with fuel viscosity,</div><div>surface tension, pressure drop, and ambient pressure. The model provided insights into the</div><div>effect of fuel properties and engine operating parameters on the drop size. More experimental</div><div>work is required to validate the model over a wider range of operating conditions and</div><div>physical fuel properties.</div><div>Overall, this work provides valuable information to increase understanding of the spray</div><div>characteristics of conventional and alternative aviation fuels at various engine operating</div><div>conditions. This work can provide valuable data for developing an advanced computational</div><div>combustor model, ultimately expediting the certification of new alternative aviation fuels.</div></div>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/14210894 |
Date | 06 April 2021 |
Creators | Dongyun Shin (10297850) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/NON-REACTING_SPRAY_CHARACTERISTICS_OF_ALTERNATIVE_AVIATION_FUELS_AT_GAS_TURBINE_ENGINE_CONDITIONS/14210894 |
Page generated in 0.0036 seconds