Return to search

EFFECT OF HERBICIDES APPLIED AFTER AN AUXINIC HERBICIDE FAILURE ON WATERHEMP AND PALMER AMARANTH

<p dir="ltr">Palmer amaranth (Amaranthus palmeri S. Watts) and waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] are two of the most troublesome weeds in U.S. soybean production and the auxin herbicides dicamba and 2,4-D, are currently used extensively for postemergence control of these species. In some cases, complete control of weeds at the time of auxin application is not achieved due to adverse environmental conditions, plant factors or misapplications. In these instances, a subsequent postemergence herbicide may be required to control any plant that survived the initial auxin herbicide application. This research was conducted to determine the efficacy and optimal successive time interval between applications of viable postemergence herbicides in soybean on Palmer amaranth and waterhemp plants surviving a previous application of 2,4-D or dicamba. Results from this research indicated that respraying a failed auxin herbicide application with a subsequent auxin herbicide, especially dicamba, was less effective than respraying with glufosinate or fomesafen to control waterhemp in addition to being a less desirable approach for resistance management. Additionally, respray herbicide applications should target 7 to 14 d after the initial failed herbicide application on waterhemp for optimal overall efficacy. When dicamba was the initial herbicide sprayed on Palmer amaranth, 94% or greater control was achieved with glufosinate in 2019 on a 7- and 14-d respray interval, which was greater than the efficacy observed with either dicamba or 2,4-D (< 82%). In 2020, these differences in herbicide efficacy were not evident within these time intervals. These general trends in treatment differences were also manifested in the data for plant height, biomass and viable apical meristems. When 2,4-D was the initial herbicide sprayed on Palmer amaranth, fomesafen and glufosinate applications on a 7-d respray interval and glufosinate on a 14-d respray interval resulted in greater control than 2,4-D in 2019. All other trends in herbicide treatments and time intervals were consistent with dicamba applied as the initial herbicide. Another part of his research was conducted with the objective of quantifying herbicide spray solution deposition and herbicide efficacy on waterhemp growing in different densities plant densities: low, high-thinned and high densities. In both field and greenhouse experiments, spray deposition (µl cm-2) on waterhemp leaves was up to 53% less on plants grown in high density compared to the other density treatments. Even though no differences in herbicide deposition between low and the high-thinned densities were observed, there were differences in herbicide efficacy. When applied to plants growing in low density, applications of glufosinate, fomesafen and topramezone reduced weed biomass to a greater extent than plants growing in the high-thinned density. Following herbicide damage to the apical meristem, plants growing in high-density produced new branches from axillary buds that were previously dormant, whereas plants growing in the low density already had axillary branches initiated from these buds and did not provide an opportunity for new shoot growth. In general, no differences in herbicide efficacy were observed across weed densities following dicamba applications. Source-to-sink translocation of dicamba to previously active meristems, or axillary buds that broke dormancy after the herbicide application, may have compensated for less spray solution interception on plants growing in high density. Lower levels of postemergence herbicide efficacy in high density weed populations are not only influenced by spray deposition differences, but also by changes in plant growth and apical dominance. This research provides further evidence that justifies the need for weed managers to reduce weed densities as much as possible, via non-chemical or soil residual herbicides (preemergence), as much as possible to optimize the efficacy of foliar herbicide applications.</p>

  1. 10.25394/pgs.24867540.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/24867540
Date19 December 2023
CreatorsTomas Federico Delucchi (17675049)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/EFFECT_OF_HERBICIDES_APPLIED_AFTER_AN_AUXINIC_HERBICIDE_FAILURE_ON_WATERHEMP_AND_PALMER_AMARANTH/24867540

Page generated in 0.0031 seconds