The development of new charge transport materials for use in phosphorescent organic light-emitting diodes (OLEDs) remains an important area of research. In this thesis, several examples of carbazole-containing norbornene-based side-chain polymers were synthesized and studied. In addition, several examples of ambipolar transport moieties were produced by combining hole- (carbazole) and electron- (oxadiazole or triazole) transport groups and examined as both small molecules and as norbornene-based side-chain polymers. UV-visible absorption, fluorescence spectroscopy, cyclic voltammetry, and other methods were used to evaluate the properties of the charge transport materials for use as hole- and/or host layers. It was found that side-functionalization produced polymers with photophysical and electrochemical properties corresponding to the charge transport side groups attached. In addition, several crosslinkable hole-transporting materials (copolymer or small molecule-based) incorporating either benzocyclobutenes, trifluorovinyl ethers, oxetanes, or bis(styrene)s were developed. Thin-films of the crosslinkable materials were shown to be readily insolubilized by thermal treatment permitting the deposition of a subsequent layer from solution onto the crosslinked layer. OLEDs fabricated using several of these materials produced efficient devices. Overall, it was shown that side-chain functionalization can be used to afford solution-processable charge transport polymers where the properties are determined mainly by the side group attached. As such, this approach could be extended to additional examples of charge transport moieties.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/43671 |
Date | 29 March 2011 |
Creators | Zuniga, Carlos A. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0013 seconds