Return to search

Functional characterization of renal ammonia transport and acid-base regulation in teleost and elasmobranch fishes

Teleost fishes incorporate renal ammonia excretion as part of a greater acid-base regulatory system. However, the transport mechanisms employed by the renal epithelium to excrete ammonia are relatively unknown. I hypothesized that, under metabolic acidosis, increased renal ammonia excretion would be the product of tubular secretion and involve a Na+/NH4+ exchange metabolon mediated through Rhesus (Rh) glycoproteins. To induce metabolic acidosis, goldfish (Carassius auratus) were exposed to a low pH environment (pH 4.0; 48-h). There was a clear signal of metabolic acidosis: a reduction in both plasma [HCO3-] and blood pH with no influence on plasma PCO2. Goldfish demonstrated an elevation in total plasma [ammonia] with a reduction in PNH3 under acidosis. Metabolic acidosis induced higher rates of urinary excretion of acidic equivalents in the form of both NH4+ and titratable acidity-HCO3- (TA-HCO3-) excretion. Urinary Na+ excretion was not affected by acidosis and urine [Na+] did not correlate with urinary [ammonia]. Alanine aminotransferase activity in the kidney was higher in acidotic goldfish. Glomerular filtration rate and urine flow rate were not affected by acidosis. Increased renal NH4+ excretion was due to increased secretion, and not increased filtration, of ammonia. There was a corresponding elevation in Rhcg1b mRNA expression but no change in renal Na+ reabsorption. My data support a secretion-based mechanism of teleost renal ammonia transport. This system is Na+ independent and is likely mediated by Rh glycoproteins and H+ ATPase, involving a parallel H+/NH3 secretion mechanism. To investigate effects of metabolic acidosis on elasmobranch fish, Pacific spiny dogfish (Squalus acanthias suckleyi) were infused with an acidic saline (125 mM HCl/375 mM NaCl; 3 ml/kg/h; 24-h). The results are preliminary, with no marked effects of HCl infusion on plasma acid-base or N-status, but increased branchial NHE2 and lower renal NHE3 protein expressions. These data are summarized in an Appendix. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/16316
Date January 2014
CreatorsLawrence, Michael J.
ContributorsWood, Chris M., Wright, Patricia A., Biology
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0019 seconds