The aim of this research was to study the mechanism involved in the synthesis of deoxyhypusine, the intermediate step in the synthesis of the amino acid hypusine. Oeoxyhypusine is derived from the butylamine moiety of a spermidine molecule which is added to the famino group of one lysine in the eukaryotic initiation factor 40 (eIF-4D). Initially, a hepatoma tissue cell (HTC) lysate with a pH of 9.5 in glycine buffer and with a depleted spermidine pool supported deoxyhypusine synthesis in protein. Since CHES buffer was as efficient as glycine buffer, the synthesis of deoxyhypusine was pH dependent (optimum ∼9.2) and not buffer dependent. Next, several inhibitors were used in the cell-free system to block deoxyhypusine synthesis. Only guazatine, a plant amine oxidase inhibitor, completely inhibited deoxyhypusine synthesis. This suggested that an oxidase was involved in deoxyhypusine synthesis. In addition factors were investigated as possible allosteric stimulators of deoxyhypusine formation. NAD⁺, NADH, FAD⁺, FMN⁺, and as nicotinamide were tested for effects on deoxyhypusine formation. NAD⁺ was the most efficient stimulator, but NAOH and nicotinamide also stimulated deoxyhypusine formation. Although these factors increased the synthesis of deoxyhypusine, these assays were done in buffer with low concentrations of spermidine. When the spermidine pool was replenished, these effects were diminished. Thus, it appeared that NAD⁺ may lower the apparent K(m) for spermidine without affecting the V(max) of deoxyhypusine synthesis. The inhibition of deoxyhypusine synthesis by guazatine implied the involvement of a polyamine oxidase. Therefore, the effect of oxygen depletion on deoxyhypusine formation was investigated. The depletion of oxygen reduced the level of deoxyhypusine synthesis to 12% of the control. This activity could be restored to 85% by reoxygenation of the lysate. Thus in support of the suggestion made by the guazatine data, a spermidine oxidase in involved in deoxyhypusine formation. The most significant contribution of this work was the development of a cell free system to study deoxyhypusine. This synthesis required an unusually high pH in vitro and required polyamine depletion (Chapter 2). In addition, synthesis requires a unique spermidine oxidase that is blocked by a guazatine and is conditionally stimulated by NAD⁺ (Chapter 3).
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/184691 |
Date | January 1989 |
Creators | Murphey, Roberta Jean. |
Contributors | Gerner, Eugene W., Tischler, Marc E., Dieckmann, Carol L., Hewlett, Martinez J., Bowden, George T. |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Dissertation-Reproduction (electronic) |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0023 seconds