Anaerobic digestion (AD) is a sustainable waste management technology that primarily generates two products: biogas and digestate. The technology relies on the microorganisms' activity, which depends on several operational factors, such as pH, temperature, solid contents, and ammonia levels.
Ammonia is an inorganic form of nitrogen resulting from the biodegradation of organic nitrogen. It is considered one of the major concerns for AD operations due to its inhibitory effects on some microorganisms, particularly methanogens. A common feedstock characterized by high nitrogen content is poultry manure (PM). PM is often avoided in anaerobic digesters due to the anticipated inhibition resulting from its high ammonia levels. However, since poultry manure is one of the most widely available organic wastes, researchers have extensively investigated ways to include PM as a primary feedstock for AD.
One possible way to treat high ammonia levels in digestate is ammonia stripping, the physio-chemical separation of ammonia from a solution by introducing a stripping (carrier) gas. There are a few approaches to performing ammonia stripping in AD applications; the most commonly discussed in the literature are pre-hydrolysis and side-stream ammonia stripping. Pre-hydrolysis ammonia stripping is performed on raw feedstock after increasing pH and temperature and is usually not restricted in selecting the gas carrier. On the other hand, side-stream ammonia stripping is when a portion of the digester's working volume is filtered, and the filtrate is sent to a unit where pH and temperature are increased. The carrier gas in these systems is often limited to anaerobic gases such as biogas or steam. The third and most novel approach is post-hydrolysis ammonia stripping, conducted at an intermediate stage between hydrolysis and methanogenesis in a two-stage AD process. This configuration would address the shortcomings of the other two systems. However, there is minimal information on the feasibility and potential of this approach in the literature.
This study aims to comprehensively investigate the post-hydrolysis ammonia stripping approach through the following four phases: Phase I) Proof of Concept; Phase II) Optimization; Phase III) Assessment of Alternative Carrier Gases; and Phase IV: Comparison of Different Ammonia Stripping Configurations.
Phase I provided the proof of concept under the batch mode and compared the performance of post-hydrolysis ammonia stripping with two-stage AD and co-digestion to improve poultry manure's methane potential as the primary substrate. It was observed that ammonia stripping successfully improved methane potential by up to 150%, whereas improvements due to two-stage AD and co-digestion were limited to 41 and 9%, respectively.
Phase II provided more insight into optimizing the ammonia stripping process. Different stripping conditions were tested (pH 7.8 (unadjusted), 9 and 10, temperature 25 (unadjusted), 40 and 55 °C, and flow rate 300 L/L/hour). The results showed that higher pH and temperature lead to higher removal efficiency. However, it was concluded that optimal conditions ultimately depend on the initial and target ammonia levels. Moreover, Analysis of Variance showed that pH and temperature were significant factors affecting the ammonia removal efficiency. In addition, it was observed that higher stripping temperatures (55 °C) enhanced the digestibility of PM and increased its methane potential more than stripping at 40 °C. It was concluded that the optimum stripping conditions were pH 9.5, temperature 40 or 55 °C, and flowrate of 100 L/L/hour to collectively increase ammonia removal while reducing the associated costs and material handling.
In Phase III, renewable natural gas (RNG) was evaluated as a stripping medium in batch testing as a potential replacement for biogas and air. Ammonia stripping with RNG yielded promising results comparable to the application of air in terms of ammonia removal and enhancing biogas production from PM (60 and 69% ammonia removal for RNG and air, respectively). In addition, a metagenomic shotgun analysis showed that most biogas production was conducted through hydrogenotrophic methanogens instead of acetoclastic methanogens, which are more susceptible to high ammonia levels.
Phase IV assessed the semi-continuous flow two-stage operation of mesophilic AD reactors coupled with different ammonia stripping configurations. Post-hydrolysis ammonia stripping successfully achieved a stable operation of PM mono-digestion at ammonia levels of 1700 and 2400 mg NH₃-N/L in the cases of stripping with air and RNG, respectively. In addition, post-hydrolysis ammonia stripping in semi-continuous flow mode may have promoted acetoclastic methanogens growth since volatile fatty acid concentrations were reduced in the digesters. Phase IV also proved that the performance of post-hydrolysis ammonia stripping is superior over pre-hydrolysis and side-stream ammonia stripping. In the semi-continuous flow reactors, post-hydrolysis ammonia stripping with air achieved on average 831 L biogas/ kg VS at an organic loading rate (OLR) of 2.6 g VS/L/day, whereas side-stream ammonia stripping resulted in average of 700 L biogas/ kg VS at OLR of 1.8 g VS/L/day and higher ammonia stripping requirements. Having said that, the base scenario (no ammonia stripping) was inhibited, indicating that both ammonia stripping configurations were considered successful in alleviating inhibitory effects of ammonia from poultry manure.
Phase IV results also proved that air stripping repeatedly outperformed RNG as stripping mediums by having higher ammonia removal efficiencies resulting in higher methane production. However, stripping with RNG is believed to have more practical advantages than air due to avoiding the risk of oxygen infiltration into the reactor. Moreover, renewable natural gas has proven to be an efficient stripping medium that is available on-site.
The final stage of Phase IV tested pre-hydrolysis ammonia stripping using air in batch mode and compared it with post-hydrolysis ammonia stripping. Pre-hydrolysis ammonia stripping provided little to no improvement to the methane potential of PM in batch mode and therefore was excluded from the semi-continuous flow experiment.
The four phases of this study demonstrated the flexibility and the superiority of post-hydrolysis ammonia stripping over the other pre-hydrolysis and side-stream ammonia stripping. In addition, post-hydrolysis ammonia stripping was proven efficient and feasible for ammonia removal and enabling the mono- or co-digestion of poultry manure. The study also showed that using RNG instead of biogas can significantly reduce the operational costs of the treatment.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/44969 |
Date | 17 May 2023 |
Creators | Adghim, Mohamad |
Contributors | Sartaj, Majid, Abdehagh, Niloofar |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0032 seconds