Les cellules solaires à hétérojonction a-Si:H/c-Si atteignent un rendement record de 24.7% en laboratoire. La passivation de la surface du c-Si est la clé pour obtenir de hauts rendements. En effet, la brusque discontinuité de la structure cristalline à l'interface amorphe/cristal induit une forte densité de liaisons pendantes créant une grande densité de défauts dans la bande interdite. Ces défauts sont des centres de recombinaison pour les paires électron-trou photogénérées dans le c-Si. Différentes couches diélectriques peuvent être utilisées pour passiver les wafers dopés n et dopés p : (i) le SiO₂ réalisé par croissance thermique, (ii) l’Al₂O₃ déposé par ALD, (iii) le a-SiNₓ:H et l’a-Si:H déposés par PECVD. La couche de passivation la plus polyvalente est a Si:H puisqu’elle peut passiver aussi bien les wafers dopés n que ceux dopés p. De plus sa production est peu coûteuse en énergie car sa croissance est réalisée à une température d’environ 200°C. L’inconvénient de cette couche de passivation est que lorsqu’elle est dopée p elle ne supporte pas des températures supérieures à 200°C, en raison de l’exodiffusion des atomes d’hydrogène qu’elle contient. Cependant, afin d'avoir un bon contact électrique, TCO et électrodes métalliques, il est souhaitable de recuire à plus haute température (entre 300°C et 500°C). Nous avons implanté des ions Argon de façon contrôlée dans des précurseurs de cellules solaires à des énergies comprises entre 1 et 30 keV, pour contrôler la profondeur à laquelle nous créons les défauts. En variant la fluence entre 10¹² Ar.cm⁻² et 10¹⁵ Ar.cm⁻² nous contrôlons la concentration de défauts créés. Nous montrons qu’une implantation à une énergie de 5 keV avec une fluence de 10¹⁵ Ar.cm⁻² n’est pas suffisante pour endommager l’interface a-Si:H/c-Si. La durée de vie effective des porteurs minoritaires mesurée par photoconductance (temps de décroissance de la photoconductivité) passe de 3 ms à 2,9 ms après implantation. En revanche les implantations à 10 keV, 10¹⁴ Ar.cm⁻² ou à 17 keV, 10¹² Ar.cm⁻² sont suffisantes pour dégrader la durée de vie effective de plus de 85%. Suite aux implantations les cellules solaires ont subi des recuits sous atmosphère contrôlée à différentes températures et ce jusqu’à 420°C. Nous avons découvert que le recuit permet de guérir les défauts introduits par l’implantation. Mais surtout, dans certains cas, d’obtenir des durées de vie après implantation et recuit supérieures aux durées de vies initiales. En combinant l’implantation ionique et les recuits, nous conservons de bonnes durées de vies effectives des porteurs de charges (supérieures à 2 ms) même avec des recuits jusqu’à 380°C. Nous avons utilisé une grande variété de techniques telles que la photoconductance, la photoluminescence, l’ellipsométrie spectroscopique, la microscopie électronique en transmission, la Spectroscopie de Masse d’Ions Secondaires, la spectroscopie Raman et l’exodiffusion de l’hydrogène pour caractériser et analyser l’ensemble des résultats et phénomènes physico-chimique intervenant dans la modification des précurseur de cellules solaires. Nous discutons ici de plusieurs effets tels que l’augmentation de la durée de vie et la tenue en température par la conservation de l’hydrogène dans la couche de silicium amorphe et ceci même après les recuits. Cette conservation peut s’expliquer par l’augmentation du nombre de liaisons Si-H au sein du silicium amorphe et par la formation de cavités lors de l’implantation. Durant les recuits l’hydrogène qui diffuse est piégé puis libéré par les cavités et/ou les liaisons pendantes, ce qui limite son exo-diffusion et le rend de nouveau disponible pour la passivation des liaisons pendantes. / A-Si:H/c-Si heterojunction solar cells have reached record efficiencies of 24.7%. The passivation of c-Si is the key to achieve a high-efficiency. Indeed, the abrupt discontinuity in the crystal structure at the amorphous/crystal interface induces a high density of dangling bonds creating a high density of defects in the band gap. These defects act as recombination centers for electron-hole pairs photogenerated in c-Si. Several dielectric layers can be used to passivate n-type and p-type wafers: (i) SiO₂ produced by thermal growth, (ii) Al₂O₃ deposited by ALD, (iii) a-SiNₓ:H and a-Si:H deposited by PECVD. The most versatile passivation layer is a-Si: H because it is effective for both p-type and n-type wafers. In addition, this process has a low thermal budget since the deposition is made at 200°C. The drawback of this passivation layer, in particular when p-type doped, is that it does not withstand temperatures above 200°C. However, in order to have a good electrical contact, TCO and metal electrodes require high temperature annealing (between 300°C and 500°C).We implanted Argon ions in solar cell precursors with energies between 1 and 30 keV, which allows to control the depth to which we are creating defects. By varying the fluence between 10¹² Ar.cm⁻² and 10¹⁵ Ar.cm⁻² we control the concentration of defects. We show that implantation with an energy of 5 keV and a fluence of 10¹⁵ Ar.cm⁻² is not sufficient to damage the a-Si:H/c-Si interface. The effective lifetime of the minority charge carriers, measured using a photoconductance technique (decay time of photoconductivity), decreases only from 3 ms to 2.9 ms after implantation. On the other hand the implantations at 10 keV, 10¹⁴ Ar.cm⁻² or at 17 keV, 10¹² Ar.cm⁻² are sufficient to degrade the effective lifetime by more than 85%.Following implantation the solar cells have been annealed in a controlled atmosphere at different temperatures and this up to 420°C. We show that annealing can heal the implantation defects. Moreover, under certain conditions, we obtain lifetimes after implantation and annealing greater than the initial effective lifetime. Combining ion implantation and annealing leads to robust passivation with effective carrier lifetimes above 2 ms even after annealing our solar cell precursors at 380°C. We used a large variety of techniques such as photoconductance, photoluminescence, spectroscopic ellipsometry, Transmission Electron Microscopy, Secondary Ion Mass Spectrometry, Raman spectroscopy and hydrogen exodiffusion to characterize and analyze the physico-chemical phenomena involved in the modification of solar cells precursors. We discuss here several effects such as the increase of the effective lifetime and the temperature robustness by the preservation of hydrogen in amorphous silicon layer and this even after annealing. This hydrogen preservation can be explained by the increase of the number of Si–H bonds in amorphous silicon and the formation of cavities during implantation. In the course of annealing the hydrogen which diffuses is trapped and then released by cavities and dangling bonds, which limits its exodiffusion and makes it available for dangling bonds passivation.
Identifer | oai:union.ndltd.org:theses.fr/2016SACLS533 |
Date | 07 December 2016 |
Creators | Defresne, Alice |
Contributors | Université Paris-Saclay (ComUE), Plantevin, Olivier, Roca i Cabarrocas, Pere |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.003 seconds