Return to search

Amperometric gas sensing

Amperometric gas sensors are widely used for environmental and industrial monitoring. They are sensitive and cheap but suffer from some significant limitations. The aim of the work undertaken in this thesis is the development of ‘intelligent’ gas sensors to overcome some of these limitations. Overall the thesis shows the value of ionic liquids as potential solvents for gas sensors, overcoming issues of solvent volatility and providing a wide potential range for electrochemical measurements. Methods have been developed for sensitive amperometry, the tuning of potentials and especially proof-of-concept (patents Publication numbers: WO2013140140 A3 and WO2014020347 A1) in respect of the intelligent self-monitoring of temperature and humidity by RTIL based sensors. Designs for practical electrodes are also proposed. The specific content is as follows. Chapter 1 outlines the fundamental principles of electrochemistry which are of importance for the reading of this thesis. Chapter 2 reviews the history and modern amperometric gas sensors. Limitations of present electrochemical approaches are critically established. Micro-electrodes and Room Temperature Ionic Liquids (RTILs) are also introduced in this chapter. Chapter 4 is focused on the study of analysing chronoamperometry using the Shoup and Szabo equation to simultaneously determine the values of concentration and diffusion coefficient of dissolved analytes in both non-aqueous and RTIL media. A method to optimise the chronoamperometric conditions is demonstrated. This provides an essential experimental basis for IL based gas sensor. Chapter 5 demonstrates how the oxidation potential of ferrocene can be tuned by changing the anionic component of room temperature ionic liquids. This ability to tune redox potentials has genetic value in gas sensing. Chapters 6 and 7 describe two novel patented approaches to monitor the local environment for amperometric gas detection. In Chapter 6, an in-situ voltammetric ‘thermometer’ is incorporated into an amperometric oxygen sensing system. The local temperature is measured by the formal potential difference of two redox couples. A simultaneous temperature and humidity sensor is reported in Chapter 7. This sensor shows advantageous features where the temperature sensor is humidity independent and vice versa. The Shoup and Szabo analysis (Chapter 4) requires ‘simple’ electron transfer and as such the reduction of oxygen in wet RTILs can be complicated by dissolved water. Chapter 8 proposes a method to stop oxygen reduction at the one electron transfer stage under humid conditions by using phosphonium based RTILs to ‘trap’ the intermediate superoxide ions. Chapters 9 and 10 report the fabrication of low cost disposable electrodes of various geometries and of different materials. The suitability of these electrode for use as working electrodes for electrochemical experiments in aqueous, non-aqueous and RTIL media is demonstrated. Their capability to be used as working probes for amperometric gas sensing systems is discussed.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:640017
Date January 2014
CreatorsXiong, Linhongjia
ContributorsCompton, Richard G.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:a8dcbf36-14b6-4627-b380-3b81e83d446c

Page generated in 0.0129 seconds