Return to search

Electrochemical biosensors for health and disease biomarkers

Advanced healthcare requires novel technologies capable of real-time sensing to long-term health monitoring. One example includes biomarker detection for disease diagnosis and deciding treatment options. But several limitations exist with current technologies; however, the COVID pandemic brought these limitations to a global presence as the authorities struggled to quickly authorize a facile test for the early detection of SARS-CoV-2. An important next step is to research alternate strategies, utilize the current infrastructure available, and build sensors that meet standards the current technologies fail to. One of the strategies involves identifying novel sensing parts. To this end, we turned our attention to bacteria as they provide a plethora of novel sensing parts. Bacteria respond to stimuli using a wide range of biomolecules that include enzymes and transcription factors.

Our group reported an optical progesterone biosensor based on a novel progesterone responsive allosteric transcription factor (aTF). Firstly, the electrochemical transduction of the binding affinity between this aTF and its cognate DNA sequence is discussed. The binding and unbinding of aTF-DNA results in an impedance change and is directly proportional to progesterone concentration. The limit of detection is comparable to the optical progesterone sensor and relevant to the physiological ranges of progesterone present in bodily fluids. Secondly, to convert the sensor into a point of care system, the expression of the aTF-enzyme fusion protein that undergoes the binding-unbinding event is discussed. The enzyme in presence of its excess substrate acts as a signal amplifier to track the binding changes. The signal depends on the proximity of the fusion protein to the electrode surface and correlates to the progesterone concentration.

As we recover from the deadly COVID pandemic, we realize that early diagnosis is a key pillar of disease containment, in addition to other approaches such as contact tracing, distancing, and personal protective equipment. A truly transformative technology in the fight against future viruses is a rapid and quantitative point-of-care (POC) test with a low limit of detection and a high specificity. To that end, an inverted glucometer technology for the detection of infectious diseases is presented. As a model system, SARS-CoV-2 antigens – nucleocapsid protein, antibodies against it, and an inflammatory biomarker are detected. Antigen of interest is sandwiched between capture and detection reagents with biotin and glucose oxidase tags respectively. Glucose oxidase, a widely used enzyme in glucometers, amplifies the output signal in presence of excess glucose. The following chapters encompass designs, different immobilization techniques, characterization, and optimization methods to develop biosensors that meet requirement standards. This research serves as a platform for development of state of the art technologies for diagnostics applications. / 2025-01-16T00:00:00Z

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/45476
Date17 January 2023
CreatorsSankar, Karthika
ContributorsGrinstaff, Mark W.
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation
RightsAttribution 4.0 International, http://creativecommons.org/licenses/by/4.0/

Page generated in 0.0019 seconds