<p> This thesis contributes to the computer-aided design (CAD) of spiral inductors and LC resonators with spiral inductors exploiting full-wave electromagnetic (EM) analysis.</p> <p> The spiral inductor is widely used in radio frequency integrated circuits (RF ICs), such as low noise amplifiers (LNA) and voltage controlled oscillators (VCO). The design of spiral inductors has a direct influence on the performance of these circuits. Recently proposed optimization methods for spiral inductors are usually based on circuit models, which are computationally efficient but inaccurate compared with full-wave electromagnetic (EM) simulations.</p> <p> For the first time, we develop an optimization technique for the design of spiral inductors and LC resonators exploiting both the computational efficiency of a (cheap) circuit model and the accuracy of a full-wave EM analysis, based on geometric programming (GP) and space mapping (SM). With the new technique, we can efficiently obtain EM-validated designs with considerable improvement over those obtained with traditional optimization methods.</p> / Thesis / Master of Applied Science (MASc)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/21881 |
Date | 06 1900 |
Creators | Yu, Wenhuan |
Contributors | Bandler, J.W., Electrical and Computer Engineering |
Source Sets | McMaster University |
Language | en_US |
Detected Language | English |
Type | Thesis |
Page generated in 0.0022 seconds