Return to search

A Role of Vitamin B2 in Reducing Amyloid-beta Toxicity in a Caenorhabditis elegans Alzheimer’s Disease Model

Alzheimer’s disease (AD) is associated with amyloid-beta peptide deposition and loss of mitochondrial function. Using a transgenic C. elegans AD worm model expressing amyloid-beta in body wall muscle, we determined that supplementation with either of the forms of vitamin B2, flavin mononucleotide (FMN) or flavin adenine dinucleotide (FAD) protected against amyloid-beta mediated paralysis. FMN and FAD were then assayed to determine effects on ATP, oxygen consumption, and reactive oxygen species (ROS) with these compounds not significantly improving any of these mitochondrial bioenergetic functions. Knockdown of the daf-16/FOXO transcriptional regulator or the FAD synthase enzyme completely abrogated the protective effects of FMN and FAD, while knockdown of the mitochondrial unfolded protein response factors ubl-5 or atfs-1 also blocked the protective effects. Therefore, vitamin B2 supplementation could lead to the activation of conserved signaling pathways in humans to delay the onset and progression of neurodegenerative diseases such as AD.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-4846
Date01 May 2018
CreatorsAmeen, Muhammad Tukur
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations
RightsAll Rights Reserved

Page generated in 0.0015 seconds