Return to search

Pathogenic Mechanisms of the Arctic Alzheimer Mutation

<p>Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, neuropathologically characterized by neurofibrillay tangles and deposition of amyloid-β (Aβ) peptides. Several mutations in the gene for amyloid precursor protein (APP) cause familial AD and affect APP processing leading to increased levels of Aβ42. However, the Arctic Alzheimer mutation (APP E693G) reduces Aβ levels. Instead, the increased tendency of Arctic Aβ peptides to form Aβ protofibrils is thought to contribute to the pathogenesis. </p><p>In this thesis, the pathogenic mechanisms of the Arctic mutation were further investigated, specifically addressing if and how the mutation affects APP processing. Evidence of a shift towards β-secretase cleavage of Arctic APP was demonstrated. Arctic APP did not appear to be an inferior substrate for α-secretase, but the availability of Arctic APP for α-secretase cleavage was reduced, with diminished levels of cell surface APP in Arctic cells. Interestingly, administration of the fatty acid docosahexaenoic acid (DHA) stimulated α-secretase cleavage and partly reversed the effects of the Arctic mutation on APP processing.</p><p>In contrast to previous findings, the Arctic mutation generated enhanced total Aβ levels suggesting increased Aβ production. Importantly, this thesis illustrates and explains why measures of both Arctic and wild type Aβ levels are highly dependent upon the Aβ assay used, with enzyme-linked immunosorbent assay (ELISA) and Western blot generating different results. It was shown that these differences were due to inefficient detection of Aβ oligomers by ELISA leading to an underestimation of total Aβ levels. </p><p>In conclusion, the Arctic APP mutation leads to AD by multiple mechanisms. It facilitates protofibril formation, but it also alters trafficking and processing of APP which leads to increased steady state levels of total Aβ, in particular at intracellular locations. Importantly, these studies highlight mechanisms, other than enhanced production of Aβ peptide monomers, which could be implicated in sporadic AD.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-7582
Date January 2007
CreatorsSahlin, Charlotte
PublisherUppsala University, Department of Public Health and Caring Sciences, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine, 1651-6206 ; 229

Page generated in 0.0023 seconds