Las biomembranas constituyen la estructura de separación fundamental en las celulas animales, y son importantes en el diseño de sistemas bioinspirados. Su simulación presenta desafíos, especialmente cuando ésta implica dinámica y grandes cambios de forma o se estudian sistemas micrométricos, impidiendo el uso de modelos atomísticos y de grano grueso. El objetivo principal de esta tesis es el desarrollo de un marco computacional para entender la dinámica de biomembranas inmersas en fluido viscoso usando modelos de campo de fase. Los modelos de campo de fase introducen un campo escalar contínuo que define una interfase difusa, cuya física está codificada en las ecuaciones en derivadas parciales que la gobiernan. Estos modelos son capaces de soportar cambios dramáticos de forma y topología, y facilitan el acoplamiento de distintos fenómenos físicos. No obstante, presentan desafíos numéricos significativos, como el alto orden de las ecuaciones, la resolución de frentes móviles y abruptos, o una eficiente integración en el tiempo. En esta disertación abordamos estos puntos mediante la combinación de una discretización espacial con métodos sin malla usando las funciones base locales de máxima entropía, y una formulación variacional Lagrangiana para acoplamiento elástico-hidrodinámico. La suavidad del método sin malla genera una aproximación precisa del campo de fase y puede lidiar fácilmente con adaptatividad local, la aproximación Lagrangiana extiende de manera natural esta adaptividad a la dinámica, y la formulación variacional permite una integración variacional temporal no linealmente estable y robusta. La implementación numérica de estos métodos en un entorno de computación de alto rendimiento ha motivado el desarrollo de un nuevo código computacional. Este código integra el estado del arte de las librerías en paralelo e incorpora importantes contribuciones técnicas para solventar cuellos de botella que aparecen con el uso de métodos sin malla en computación a gran escala. El código resultante es flexible y ha sido aplicado a otros problemas científicos en varias colaboraciones que incluyen flexoelectricidad, conformado metálico, fluidos viscosos o fractura en materiales con energía de superficie altamente anisotrópica. / Biomembranes are the fundamental separation structure in animal cells, and are also used in engineered bioinspired systems. Their simulation is challenging, particularly when large shape changes and dynamics are involved, or micrometer systems are considered, ruling out atomistic or coarse-grained molecular modeling. The main goal of this thesis is to develop a computational framework to understand the dynamics of biomembranes embedded in a viscous fluid using phase-field models. Phase-field models introduce a scalar continuous field to define a diffuse moving interface, whose physics is encoded in partial differential equations governing it. These models can deal with dramatic shape and topological transformations and are amenable to multiphysics coupling. However, they present significant numerical challenges, such as the high-order character of the equations, the resolution of sharp and moving fronts, or the efficient time-integration. We address all these issues through a combination of meshfree spacial discretization using local maximum-entropy basis functions, and a Lagrangian variational formulation of the coupled elasticity-hydrodynamics. The smooth meshfree approach provides accurate approximations of the phase-field and can easily deal with local adaptivity, the Lagrangian approach naturally extend adaptivity to dynamics, and the variational formulation enables nonlinearly-stable robust variational time integration. The numerical implementation of these methods in a high-performance computing framework has motivated the development of a new computer code, which integrates state-of-the-art parallel libraries and incorporates important technical contributions to overcome bottlenecks that arise in meshfree methods for large-scale problems. The resulting code is flexible and has been applied to other scientific problems in a number of collaborations dealing with flexoelectricity, metal forming, creeping flows, or fracture in materials with strongly anisotropic surface energy.
Identifer | oai:union.ndltd.org:TDX_UPC/oai:www.tdx.cat:10803/284209 |
Date | 28 October 2014 |
Creators | Peco Regales, Christian |
Contributors | Arroyo Balaguer, Marino, Universitat Politècnica de Catalunya. Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports de Barcelona |
Publisher | Universitat Politècnica de Catalunya |
Source Sets | Universitat Politècnica de Catalunya |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | 112 p., application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/3.0/es/ |
Page generated in 0.0013 seconds