O modelo de Composição de Especialistas Locais (CEL) para classificação de populações constitui uma interessante ferramenta de análise discriminante. Para construção do modelo CEL utiliza-se técnicas discriminantes paramétricas e não-paramétricas, como a Análise Discriminante de Fisher, Logit e Extended DEA-DA. Tais modelos são aplicados numa massa de dados particular como um todo, e na mesma massa de dados clusterizada, visando eleger os especialistas que apresentem melhor desempenho na classificação de populações, ditos vencedores. Ponderam-se os especialistas vencedores nos clusters com o objetivo de construir a composição de especialistas locais (CEL). Realiza-se um estudo de caso onde o modelo CEL é aplicado a um conjunto de empresas classificadas como solventes e insolventes e que serve de sustentáculo para a calibração dos especialistas locais e construção da composição. O presente trabalho tem por objetivo estudar um modelo de Composição de Especialistas Locais (CEL) como instrumento para classificação de populações e compará-lo com o modelo discriminante que apresentou maior número de observações corretamente classificadas numa massa de dados particular, verificando a ocorrência ou não de melhoria no número absoluto de classificações corretas.
Identifer | oai:union.ndltd.org:IBICT/oai:agregador.ibict.br.BDTD_ITA:oai:ita.br:87 |
Date | 00 December 2004 |
Creators | Omar José Sarmento dos Santos |
Contributors | Armando Zeferino Milioni |
Publisher | Instituto Tecnológico de Aeronáutica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações do ITA, instname:Instituto Tecnológico de Aeronáutica, instacron:ITA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds