Return to search

Classificação de lesões em mamografias por análise de componentes independentes, análise discriminante linear e máquina de vetor de suporte / Classification of injuries in the Mamogram by Components of Independent Review, Analysis Discriminant Linear and Vector Machine, Support

Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-08-14T18:15:08Z
No. of bitstreams: 1
DanielCosta.pdf: 1087754 bytes, checksum: ada5f863f42efd8298fff788c37bded3 (MD5) / Made available in DSpace on 2017-08-14T18:15:08Z (GMT). No. of bitstreams: 1
DanielCosta.pdf: 1087754 bytes, checksum: ada5f863f42efd8298fff788c37bded3 (MD5)
Previous issue date: 2008-02-25 / Female breast cancer is the major cause of death in western countries. Efforts in Computer Vision have been made in order to add improve the diagnostic accuracy by radiologists. In this work, we present a methodology that uses independent component analysis (ICA) along with support vector machine (SVM) and linear discriminant analysis (LDA) to distinguish between mass or non-mass and benign or malign tissues from mammograms. As a result, it was found that: LDA reaches 90,11% of accuracy to discriminante between mass or non-mass and 95,38% to discriminate between benign or malignant tissues in DDSM database and in mini-MIAS database we obtained 85% to discriminate between mass or non-mass and 92% of accuracy to discriminate between benign or malignant tissues; SVM reaches 99,55% of accuracy to discriminate between mass or non-mass and the same percentage to discriminate between benign or malignat tissues in DDSM database whereas, and in MIAS database it was obtained 98% to discriminate between mass or non-mass and 100% to discriminate between benign or malignant tissues. / Câncer de mama feminino é o câncer que mais causa morte nos países ocidentais. Esforços em processamento de imagens foram feitos para melhorar a precisão dos diagnósticos por radiologistas. Neste trabalho, nós apresentamos uma metodologia que usa análise de componentes independentes (ICA) junto com análise discriminante linear (LDA) e máquina de vetor de suporte (SVM) para distinguir as imagens entre nódulos ou não-nódulos e os tecidos em benignos ou malignos. Como resultado, obteve-se com LDA 90,11% de acurácia na discriminação entre nódulo ou não-nódulo e 95,38% na discriminação de tecidos benignos ou malignos na base de dados DDSM. Na base de dados mini- MIAS, obteve-se 85% e 92% na discriminação entre nódulos ou não-nódulos e tecidos benignos ou malignos respectivamente. Com SVM, alcançou-se uma taxa de até 99,55% na discriminação de nódulos ou não-nódulos e a mesma porcentagem na discriminação entre tecidos benignos ou malignos na base de dados DDSM enquanto que na base de dados mini-MIAS, obteve-se 98% e até 100% na discriminação de nódulos ou não-nódulos e tecidos benignos ou malignos, respectivamente.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede/1816
Date25 February 2008
CreatorsDUARTE, Daniel Duarte
ContributorsBARROS FILHO, Allan Kardec Duailibe
PublisherUniversidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, Brasil, DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds