Return to search

Estabilidade em análise de agrupamento (cluster analysis) / Stability in cluster analysis

Submitted by (ana.araujo@ufrpe.br) on 2016-08-03T17:35:12Z
No. of bitstreams: 1
Macio Augusto de Albuquerque.pdf: 1005283 bytes, checksum: b9e55eee4b0b853629358e6b2158ba81 (MD5) / Made available in DSpace on 2016-08-03T17:35:12Z (GMT). No. of bitstreams: 1
Macio Augusto de Albuquerque.pdf: 1005283 bytes, checksum: b9e55eee4b0b853629358e6b2158ba81 (MD5)
Previous issue date: 2005-02-23 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main objective of this research was to propose a systematic to the study and interpretation of the stability of methods in cluster analysis through many cluster algorithms in vegetation data. The data set used came from a survey in the Silviculture Forest at Federal University of Viçosa – MG. To perform the cluster analysis the matrices of Mahalanobis distance were estimated based on the original data and by “bootstrap” resampling. Also the methods of single linkageage, complete linkageage, the average of the distances, the centroid, the medium and the Ward were used. For the detection of the association among the methods it was applied the chi-square test. For the various methods of clustering it was obtained a cofenetical correlation. The results of the associations of methods were very similar, indicating, in principle, that any algorithm of cluster studied is stabilized and exist, in fact, groups among the individuals analyzed. However, it was concluded that themethods coincide with themselves, except the methods of centroid and Ward. Also the centroid methods and average when compared to the Ward, respectively, based on the matrices of Mahalanobis starting from the original data set and “bootstrap”. The methodology proposed is promising to the study and interpretation of the stabilityof methods concerning the cluster analysis in vegetation data. / Objetivou-se propor uma sistemática para o estudo e a interpretação da estabilidade dos métodos em análise de agrupamento, através de vários algoritmos de agrupamento em dados de vegetação. Utilizou-se dados provenientes de um levantamento na Mata da Silvicultura, da Universidade Federal de Viçosa-MG. Para análise de agrupamento foram estimadas as matrizes de distância de Mahalanobis com base nos dados originais e via reamostragem “bootstrap” e aplicados os métodos da ligação simples, ligação completa, médias das distâncias, do centróide, da mediana e do Ward. Para a detecção de associação entre os métodos foi aplicado o teste qui-quadrado. Para os diversos métodos de agrupamento foi obtida a correlação cofenética. Os resultados de associação dos métodos foram semelhantes, indicando em princípio que qualquer algoritmo de agrupamento estudado está estabilizado e existem, de fato, grupos entre os indivíduos observados. No entanto, observou-se que os métodos são coincidentes, exceto osmétodos do centróide e Ward e os métodos do centróide e mediana quando comparados com o de Ward, respectivamente, com base nas matrizes de Mahalanobis a partir dos dados originais e “bootstrap”. A sistemática proposta é promissora para o estudo e a interpretação da estabilidade dos métodos de análise de agrupamento em dados de vegetação.

Identiferoai:union.ndltd.org:IBICT/oai:tede2:tede2/5178
Date23 February 2005
CreatorsALBUQUERQUE, Mácio Augusto de
ContributorsFERREIRA, Rinaldo Luiz Caraciolo, SILVA, José Antônio Aleixo da, STOSIC, Borko, SANTOS, Eufrázio de Souza, LIRA JÚNIOR, Mário de Andrade
PublisherUniversidade Federal Rural de Pernambuco, Programa de Pós-Graduação em Biometria e Estatística Aplicada, UFRPE, Brasil, Departamento de Estatística e Informática
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRPE, instname:Universidade Federal Rural de Pernambuco, instacron:UFRPE
Rightsinfo:eu-repo/semantics/openAccess
Relation768382242446187918, 600, 600, 600, 600, -6774555140396120501, -5836407828185143517, 2075167498588264571

Page generated in 0.003 seconds