Return to search

Active learning with applications to the diagnosis of parasites / Aprendizado ativo com aplicações ao diagnóstico de parasitos

Orientadores: Alexandre Xavier Falcão, Pedro Jussieu de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-25T09:02:17Z (GMT). No. of bitstreams: 1
Saito_PriscilaTiemiMaeda_D.pdf: 19630078 bytes, checksum: 429701e7f944ad5a4549de98e4279844 (MD5)
Previous issue date: 2014 / Resumo: Conjuntos de imagens têm crescido consideravelmente com o rápido avanço de inúmeras tecnologias de imagens, demandando soluções urgentes para o processamento, organização e recuperação da informação. O processamento, neste caso, objetiva anotar uma dada imagem atribuindo-na um rótulo que representa seu conteúdo semântico. A anotação é crucial para a organizaçao e recuperação efetiva da informação relacionada às imagens. No entanto, a anotação manual é inviável em grandes conjuntos de dados. Além disso, a anotação automática bem sucedida por um classificador de padrões depende fortemente da qualidade de um conjunto de treinamento reduzido. Técnicas de aprendizado ativo têm sido propostas para selecionar, a partir de um grande conjunto, amostras de treinamento representativas, com uma sugestão de rótulo que pode ser confirmado ou corrigido pelo especialista. Apesar disso, essas técnicas muitas vezes ignoram a necessidade de tempos de resposta interativos durante o processo de aprendizado ativo. Portanto, esta tese de doutorado apresenta métodos de aprendizado ativo que podem reduzir e/ou organizar um grande conjunto de dados, tal que a fase de seleção não requer reprocessá-lo inteiramente a cada iteração do aprendizado. Além disso, tal seleção pode ser interrompida quando o número de amostras desejadas, a partir do conjunto de dados reduzido e organizado, é identificado. Os métodos propostos mostram um progresso cada vez maior, primeiro apenas com a redução de dados, e em seguida com a subsequente organização do conjunto reduzido. Esta tese também aborda um problema real --- o diagnóstico de parasitos --- em que a existência de uma classe diversa (isto é, uma classe de impureza), com tamanho muito maior e amostras que são similares a alguns tipos de parasitos, torna a redução de dados consideravelmente menos eficaz. Este problema é finalmente contornado com um tipo de organização de dados diferente, que ainda permite tempos de resposta interativos e produz uma abordagem de aprendizado ativo melhor e robusta para o diagnóstico de parasitos. Os métodos desenvolvidos foram extensivamente avaliados com diferentes tipos de classificadores supervisionados e não-supervisionados utilizando conjunto de dados a partir de aplicações distintas e abordagens baselines que baseiam-se em seleção aleatória de amostras e/ou reprocessamento de todo o conjunto de dados a cada iteração do aprendizado. Por fim, esta tese demonstra que outras melhorias são obtidas com o aprendizado semi-supervisionado / Abstract: Image datasets have grown large with the fast advances and varieties of the imaging technologies, demanding urgent solutions for information processing, organization, and retrieval. Processing here aims to annotate the image by assigning to it a label that represents its semantic content. Annotation is crucial for the effective organization and retrieval of the information related to the images. However, manual annotation is unfeasible in large datasets and successful automatic annotation by a pattern classifier strongly depends on the quality of a much smaller training set. Active learning techniques have been proposed to select those representative training samples from the large dataset with a label suggestion, which can be either confirmed or corrected by the expert. Nevertheless, these techniques very often ignore the need for interactive response times during the active learning process. Therefore, this PhD thesis presents active learning methods that can reduce and/or organize the large dataset such that sample selection does not require to reprocess it entirely at every learning iteration. Moreover, it can be interrupted as soon as a desired number of samples from the reduced and organized dataset is identified. These methods show an increasing progress, first with data reduction only, and then with subsequent organization of the reduced dataset. However, the thesis also addresses a real problem --- the diagnosis of parasites --- in which the existence of a diverse class (i.e., the impurity class), with much larger size and samples that are similar to some types of parasites, makes data reduction considerably less effective. The problem is finally circumvented with a different type of data organization, which still allows interactive response times and yields a better and robust active learning approach for the diagnosis of parasites. The methods have been extensively assessed with different types of unsupervised and supervised classifiers using datasets from distinct applications and baseline approaches that rely on random sample selection and/or reprocess the entire dataset at each learning iteration. Finally, the thesis demonstrates that further improvements are obtained with semi-supervised learning / Doutorado / Ciência da Computação / Doutora em Ciência da Computação

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/275528
Date25 August 2018
CreatorsSaito, Priscila Tiemi Maeda, 1985-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Rezende, Pedro Jussieu de, 1955-, Falcão, Alexandre Xavier, 1966-, Marana, Aparecido Nilceu, Araujo, Arnaldo de Albuquerque, Pedrini, Hélio, Rocha, Anderson de Rezende
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Computação, Programa de Pós-Graduação em Ciência da Computação
Source SetsIBICT Brazilian ETDs
LanguageInglês
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format72 f. : il., application/octet-stream
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds