Return to search

Health Impact Assessment : Quantifying and Modeling to Better Decide / Évaluation d'impact sur la santé : quantifier et modéliser pour mieux décider / Avaliação de Impacte na Saúde : Quantificar e Modelizar para Melhor Decidir

L’Évaluation d’Impact sur la Santé (EIS) est un instrument de support à la décision, pour juger une politique quant aux effets potentiels sur la santé et leur distribution (équité). C’est encore souvent une approche qualitative.L’objectif principal est de montrer l’utilité de méthodologies statistiques quantitatives multivariées pour enrichir la pratique d’EIS, améliorant la compréhension des résultats par des professionnels non-statisticiens.Les futures réformes des systèmes de santé déplacent le centre d’évaluation des services de santé des fournisseurs aux citoyens (besoins, préférences, équité d’accès aux gains de santé), exploitant big data associant information de soins aux données sociales, économiques et de déterminants de santé. Des méthodologies statistiques et d’évaluation innovantes sont nécessaires à cette transformation.Les méthodes de data mining et data science, souvent complexes, peuvent gérer des résultats graphiques compréhensibles pour amplifier l’usage d’EIS, qui deviendrait ainsi un outil précieux d’évaluation de politiques publiques pour amener les citoyens au centre de la prise de décision. / Health Impact Assessment (HIA) is a decision-making support tool to judge a policy as to its potential effects and its distribution on a population’s health (equity). It’s still very often a qualitative approach.The main aim here is to show the usefulness of applying quantified multivariate statistical methodologies to enrich HIA practice, while making the decision-making process easier, by issuing understandable outputs even for non-statisticians.The future of healthcare reforms shifts the center of evaluation of health systems from providers to people’s individual needs and preferences, reducing health inequities in access and health outcomes, using big data linking information from providers to social and economic health determinants. Innovative statistical and assessment methodologies are needed to make this transformation.Data mining and data science methods, however complex, may lead to graphical outputs simple to understand by decision makers. HIA is thus a valuable tool to assure public policies are indeed evaluated while considering health determinants and equity and bringing citizens to the center of the decision-making process. / A Avaliação de Impacte na Saúde (AIS) é um instrumento de suporte à decisão para julgar política quanto aos seus efeitos potenciais e à sua distribuição na saúde de uma população (equidade). É geralmente ainda uma abordagem qualitativa.O principal objetivo é mostrar a utilidade das metodologias estatísticas quantitativas e multivariadas para enriquecer a prática de AIS, melhorando a compreensão dos resultados por profissionais não-estatísticos.As futuras reformas dos sistemas de saúde deslocam o centro da avaliação dos serviços de saúde dos prestadores para as necessidades e preferências dos cidadãos, reduzindo iniquidades no acesso à saúde e ganhos em saúde, usando big data que associam informação de prestadores a dados sociais e económicos de determinantes de saúde. São necessárias metodologias estatísticas e de avaliação inovadoras para esta transformação.Métodos de data mining e data science, mesmo complexos, podem gerar resultados gráficos compreensíveis para os decisores. A AIS é assim uma ferramenta valiosa para avaliar políticas públicas considerando determinantes de saúde, equidade e trazendo os cidadãos para o centro da tomada de decisão.

Identiferoai:union.ndltd.org:theses.fr/2017CNAM1151
Date19 December 2017
CreatorsBacelar-Nicolau, Leonor
ContributorsParis, CNAM, Universidade de Lisboa. Faculdade de medicina, Saporta, Gilbert, Pereira Miguel, José
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguagePortuguese
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0028 seconds