Return to search

Obtenção dos níveis de significância para os testes de Kruskal-Wallis, Friedman e comparações múltiplas não-paramétricas. / Obtaining significance levels for Kruskal-Wallis, Friedman and nonparametric multiple comparisons tests.

Uma das principais dificuldades encontradas pelos pesquisadores na utilização da Estatística Experimental Não-Paramétrica é a obtenção de resultados confiáveis. Os testes mais utilizados para os delineamentos com um fator de classificação simples inteiramente casualizados e blocos casualizados são o de Kruskal-Wallis e o de Friedman, respectivamente. As tabelas disponíveis para estes testes são pouco abrangentes, fazendo com que o pesquisador seja obrigado a recorrer a aproximações. Estas aproximações diferem dependendo do autor a ser consultado, podendo levar a resultados contraditórios. Além disso, tais tabelas não consideram empates, mesmo no caso de pequenas amostras. No caso de comparações múltiplas isto é mais evidente ainda, em especial quando ocorrem empates ou ainda, nos delineamentos inteiramente casualizados onde se tem número diferente de repetições entre tratamentos. Nota-se ainda que os softwares mais utilizados em geral recorrem a aproximações para fornecer os níveis de significância, além de não apresentarem resultados para as comparações múltiplas. Assim, o objetivo deste trabalho é apresentar um programa, em linguagem C, que realiza os testes de Kruskal-Wallis, de Friedman e de comparações múltiplas entre todos os tratamentos (bilateral) e entre os tratamentos e o controle (uni e bilateral) considerando todas as configurações sistemáticas de postos ou com 1.000.000 de configurações aleatórias, dependendo do número total de permutações possíveis. Dois níveis de significância são apresentados: o DW ou MaxDif , baseado na comparação com a diferença máxima dentro de cada configuração e o Geral, baseado na comparação com todas as diferenças em cada configuração. Os valores do nível de significância Geral assemelham-se aos fornecidos pela aproximação normal. Os resultados obtidos através da utilização do programa mostram, ainda, que os testes utilizando as permutações aleatórias podem ser bons substitutos nos casos em que o número de permutações sistemáticas é muito grande, já que os níveis de probabilidade são bastante próximos. / One of the most difficulties for the researchers in using Nonparametric Methods is to obtain reliable results. Kruskal-Wallis and Friedman tests are the most used for one-way layout and for randomized blocks, respectively. Tables available for these tests are not too wild, so the research must use approximate values. These approximations are different, depending on the author and the results can be not similar. Furthermore, these tables do not taking account tied observations, even in the case of small sample. For multiple comparisons, this is more evident, specially when tied observations occur or the number of replications is different. Many softwares like SAS, STATISTICA, S-Plus, MINITAB, etc., use approximation in order to get the significance levels and they do not present results for multiple comparisons. Thus, the aim of this work is to present a routine in C language that runs Kruskal-Wallis, Friedman and multiple comparisons among all treatments (bi-tailed) and between treatment and control (uni and bi-tailed), considering all the systematic configurations of the ranks or with more than 1,000,000 random ones, depending on the total of possible permutations. Two levels of significance are presented: DW or MaxDif, based on the comparison of the maximum difference within each configuration and the Geral, based on the comparison of all differences for each configuration. The Geral values of the significance level are very similar for the normal approximation. The obtaining results through this routine show that, the tests using random permutations can be nice substitutes for the case of the number of systematic permutations is too large, once the levels of probability are very near.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-15032002-093020
Date29 June 2000
CreatorsPontes, Antonio Carlos Fonseca
ContributorsCorrente, Jose Eduardo
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0018 seconds