Microalgae cultivation has received much research attention in recent decades due to its high photosynthetic productivity and ability to produce biofuel feedstocks as well as high value compounds for the health food, cosmetics, and agriculture markets. Microalgae are conventionally grown in open pond raceways or closed photobioreactors. Due to the high water contents of these cultivation systems, they require large energy inputs for pumping and mixing the dilute culture, as well as concentrating and dewatering the resultant biomass. The energy required to operate these systems is generally greater than the energy contained in the resultant biomass, which precludes their use in sustainable biofuel production. To address this challenge, we designed a novel photobioreactor inspired by higher plants. In this synthetic leaf system, a modified transpiration mechanism is used which delivers water and nutrients to photosynthetic cells that grow as a biofilm on a porous, wicking substrate. Nutrient medium flow through the reactor is driven by evaporation, thereby eliminating the need for a pump. This dissertation outlines the design, construction, operation, and modeling of such a synthetic leaf system for energy positive biofuel production. First, a scaled down synthetic leaf reactor was operated alongside a conventional stirred tank photobioreactor. It was demonstrated that the synthetic leaf system required only 4% the working water volume as the conventional reactor, and showed growth rates as high as four times that of the conventional reactor. However, inefficiencies in the synthetic leaf system were identified and attributed to light and nutrient limitation of growth in the biofilm. To address these issues, a modeling study was performed with the aim of balancing the fluxes of photons and nutrients in the synthetic leaf environment. The vascular nutrient medium transport system was also modeled, enabling calculation of nutrient delivery rates as a function of environmental parameters and material properties of the porous membrane. These models were validated using an experimental setup in which the nutrient delivery rate, growth rate, and photosynthetic yield were measured for single synthetic leaves. The synthetic leaf system was shown to be competitive with existing technologies in terms of biomass productivity, while requiring zero energy for nutrient and gas delivery to the microorganisms. Future studies should focus on utilizing the synthetic leaf system for passive harvesting of secreted products in addition to passive nutrient delivery. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/21581 |
Date | 16 October 2013 |
Creators | Murphy, Thomas Eugene |
Source Sets | University of Texas |
Language | en_US |
Detected Language | English |
Format | application/pdf |
Page generated in 0.0029 seconds