Return to search

Synthesis of amino estratrienes as peptidomimetics

This thesis describes the synthetic routes investigated in order to prepare amino estratrienes as potential small molecule mimics of endogenous opioid peptides. 3-Hydroxy-17 a-aminoestra-1,3,5(1 O)-triene was prepared from estra-1,3,5 (1 0)-trien-3,17p-diol by formation of the sulphonate ester 3-benzyloxy-1713- mesyloxyestra-1,3,5(1 O)-triene, displacement of the mesylate ester group with azide anion to give 3-benzyloxy-17a-azidoestra-1,3,5(10)-triene, followed by catalytic hydrogenation. As an altemative to hydrogenation, the Staudinger reaction was performed on the 17 a-azide but gave 3-benzyloxy-17 a( diethylphosphoramido )estra-1,3,5(1 O)-triene. A key compound, 3-Benzyloxy·6-azidomethyl-17p-acetoxyestra-1,3,5(1 0),6- tetraene was obtained from 3,17P-dihydroxyestra-1,3,5(10)-triene in seven steps. The synthesis involved benzylic oxidation of 3,17p-diacetoxyestra-1,3,5(1 O)-triene with chromium trioxide-3,5-dimethyl pyrazole complex to give the key intermediate, 3-benzyloxy-17 p-hydroxyestra-1,3,5(1 0)-trien-6-one. Sulphur ylid methylene insertion at the p-face of the 6-keto derivative gave 3-benzyloxy-6-spiro -epoxy- 17p-hydroxyestra-1 ,3,5(1 O)-triene. Base promoted isomerisation of the 6-spiro -epoxide gave 3-benzyloxy-6-hydroxymethyl-17p-hydroxyestra-1,3,5(10),6- tetraene. The allylic alcohol was acetylated and the key compound obtained from palladium(O)-catalysed allylic azidation. Other alternative approaches involved regioselective nucleophilic ring opening with azide anion of the 6-spiro -epoxide to give 3-benzyloxy-6-hydroxy-6- azidomethyl-17P-hydroxyestra-1,3,5(10)-triene. Manganese (IV) oxidation of the allylic alcohol gave the allylic aldehyde and its oxime, 3-benzyloxy-6-carbaldoxime- 17p-hydroxyestra-1,3,5(10),6-tetraene was obtained upon treatment with hydroxylamine hydrochloride. 3,17P-Bis(tert-butyldimethylsiloxy)estra-1,3,5(1 O)-triene gave [,,6-3,1713- bis(terl-butyldimethylsilyloxy)estra-1,3,5(1 O)-triene ]-tricarbonylchromium upon treatment with chromium hexacarbonyl. However, subsequent benzylic activation at position 6 and treatment with various electrophiles was unsuccessful.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:321229
Date January 1995
CreatorsEddolls, Jonathan Paul
PublisherLoughborough University
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://dspace.lboro.ac.uk/2134/11263

Page generated in 0.0016 seconds