Return to search

High-performance [delta sigma] analog-to-digital conversion

This dissertation is about a new [delta sigma] analog-to-digital converter that offers enhanced quantization noise suppression at low oversampling ratios. This feature makes the converter attractive in applications where speed and resolution are simultaneously demanded. The converter exploits double-sampling for speed, and takes advantage of a new loop-filter to pin down passband quantization noise. A proto-type is fabricated in 0.18-[mu]m CMOS and tested. Results show that at 200-MS/s, the converter achieves an effective number of bits (ENOB) of 12.2-b in a 12.5-MHz signal band while consuming 89-mW from a 1.8-V supply. Using a common performance metric that takes into account of ENOB and signal bandwidth, the prototype outperforms all previously-reported IEEE switched-capacitor [delta sigma] modulators. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17804
Date07 September 2012
CreatorsTsang, Robin Matthew, 1979-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0027 seconds