La première partie de la thèse traite d’inférence combinatoire en Analyse Géométrique des Données (AGD). Nous proposons des tests multidimensionnels sans hypothèse sur le processus d’obtention des données ou les distributions. Nous nous intéressons ici aux problèmes de typicalité (comparaison d’un point moyen à un point de référence ou d’un groupe d’observations à une population de référence) et d’homogénéité (comparaison de plusieurs groupes). Nous utilisons des procédures combinatoires pour construire un ensemble de référence par rapport auquel nous situons les données. Les statistiques de test choisies mènent à des prolongements originaux : interprétation géométrique du seuil observé et construction d’une zone de compatibilité.La seconde partie présente l’étude de l’absentéisme dans les Industries Electriques et Gazières de 1995 à 2011 (avec construction d’une cohorte épidémiologique). Des méthodes d’AGD sont utilisées afin d’identifier des pathologies émergentes et des groupes d’agents sensibles. / The first part of this PhD thesis deals with combinatorial inference methods forGeometric Data Analysis (GDA). We propose multidimensional tests that make no assumption on the process of generating data or distributions. We focus particularly on problems of typicality (comparison of a mean point to a reference point or comparison of a group of observations to a reference population) and on problems of homogeneity (comparison of several groups). These methods consist in using combinatorial procedures to build a reference set with respect to which we situate the data. The chosen test statistics lead to original extensions: geometric interpretation of the observed level and construction of a compatibilityzone.The second part of this thesis presents the study of absenteeism in the French Electricity and Gas Industries from 1995 to 2011 (with construction of an epidemiological cohort). GDA methods are used to identify emerging diseases and sensitive groups of agents.
Identifer | oai:union.ndltd.org:theses.fr/2013PA090028 |
Date | 03 October 2013 |
Creators | Bienaise, Solène |
Contributors | Paris 9, Cazes, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds