Return to search

Analyse complexe et problèmes de Dirichlet dans le plan : équation de Weinstein et autres conductivités non-bornées

L'équation de Weinstein á coefficients complexes est une équation régissant les Potentiels á Symétrie Axiale (PSA) qui s'écrit $L_m[u]=\Delta u+\left(m/x\right)\d_x u =0$, oú $m\in\C$. Cette équation intervient notamment pour la modélisation du bord du plasma dans un Tokamak pour $m=-1$, ou encore elle est, lorsque $m=1$, appelée équation de Ernst linéarisée (équation permettant de donner explicitement des solutions aux équations d'Einstein). Ici, on généralise des résultats connus pour $m\in \R$ au cas $m\in\C$ (on donne des expressions explicites de solutions fondamentales aux opérateurs de Weinstein et leurs estimations au voisinage des singularités, puis on démontre une formule de Green pour les PSA dans le demi-plan droit $\H^+$ pour Re $m< 1$). On prouve un nouveau théoréme de décomposition des PSA dans des domaines annulaires quelconques pour $m\in\C$ et dans une géométrie annulaire particuliére faisant intervenir les coordonnées bipolaires, on prouve toujours pour $m\in\C$ qu'une famille de solutions des PSA en termes de fonctions de Legendre Associées de premiére et seconde espéce forme une famille compléte (par une méthode de quasi-séparabilité des variables et par une analyse de Fourier) permettant d'exprimer les PSA sous forme de série et lorsque $m\in \R$, on montre que cette famille est même une base de Riesz dans certains anneaux á bord circulaire non concentrique. Dans une deuxiéme partie, par une méthode qui est due á A. S. Fokas, on donne, sous forme intégrale explicite, des formules des PSA dans un domaine circulaire du demi-plan droit $\H^+$, dans le cas oú le paramétre $m$ est un entier relatif. Ces représentations sont obtenues par la résolution d'un probléme de Riemann-Hilbert sur le plan complexe ou sur une surface de Riemann á deux feuillets selon la parité du coefficient $m$. Ces formules font intervenir de façon explicites les données Dirichlet et Neumann des PSA. On montre aussi que cette méthode s'applique á tous les domaines simlement connexe de $\H^+$ á bord régulier. Dans la derniére partie, on étudie une classe de fonctions qui englobe les PSA, ce sont les fonctions pseudo-holomorphes, {\it i. e.} les solutions de l'équation $\bar\d w=\alpha\overline{w}$. avec $\alpha\in L^r$, $2\leq r<\infty$. Un résultat qui semble être le tout premier de son genre a été obtenu, c'est une extension de la régularité du principe de similarité (décomposition des fonction pseudo-holomorphe sous la forme $e^s F$ sous certaines hypothéses de régularités et oú $F$ est une fonction holomorphe) et une réciproque de ce principe qui conduit á un paramétrage analytique de cette classe de fonctions dans le cas critique $r=2$. Puis en utilisant la connexion entre les fonctions pseudo-holomorphes et les solutions de l'équation de Beltrami conjuguée, on résoud un probléme de Dirichlet á données $L^p$ pondérées sur des domaines lisses pour des équations du type conductivité á coefficient dont le log appartient á l'espace de Sobolev $W^{1,2}$.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00916049
Date02 December 2013
CreatorsChaabi, Slah
PublisherAix-Marseille Université
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds