Le thème général de cette thèse est celui de la construction de modèles permettant d'approximer une fonction f lorsque la valeur de f(x) est connue pour un certain nombre de points x. Les modèles considérés ici, souvent appelés modèles de krigeage, peuvent être abordés suivant deux points de vue : celui de l'approximation dans les espaces de Hilbert à noyaux reproduisants ou celui du conditionnement de processus gaussiens. Lorsque l'on souhaite modéliser une fonction dépendant d'une dizaine de variables, le nombre de points nécessaires pour la construction du modèle devient très important et les modèles obtenus sont difficilement interprétables. A partir de ce constat, nous avons cherché à construire des modèles simplifiés en travaillant sur un objet clef des modèles de krigeage : le noyau. Plus précisement, les approches suivantes sont étudiées : l'utilisation de noyaux additifs pour la construction de modèles additifs et la décomposition des noyaux usuels en sous-noyaux pour la construction de modèles parcimonieux. Pour finir, nous proposons une classe de noyaux qui est naturellement adaptée à la représentation ANOVA des modèles associés et à l'analyse de sensibilité globale.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00770625 |
Date | 09 November 2001 |
Creators | Durrande, Nicolas |
Publisher | Ecole Nationale Supérieure des Mines de Saint-Etienne |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds