Dans la première partie nous étudions l'apprentissage et le rappel dans des réseaux de neurones à une couche (modèle de Hopfield). Nous proposons un algorithme d'apprentissage qui est capable d'optimiser la 'stabilité', un paramètre qui décrit la qualité de la représentation d'un pattern dans le réseau. Pour des patterns aléatoires, cet algorithme permet d'atteindre la borne théorique de Gardner. Nous étudions ensuite l'importance dynamique de la stabilité et d'un paramètre concernant la symétrie de la matrice de couplages. Puis, nous traitons le cas où les couplages ne peuvent prendre que deux valeurs (inhibiteur, excitateur). Pour ce modèle nous établissons les limites supérieures de la capacité par un calcul numérique, et nous proposons une solution analytique. La deuxième partie de la thèse est consacrée à une étude détaillée - du point de vue de la physique statistique - du problème du voyageur de commerce. Nous étudions le cas spécial d'une matrice aléatoire de connexions. Nous exposons la théorie de ce problème (suivant la méthode des répliques) et la comparons aux résultats d'une étude numérique approfondie.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011866 |
Date | 14 June 1989 |
Creators | Krauth, Werner |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds