Return to search

Topics in analytic number theory

In this thesis we prove several results in analytic number theory. 1. We show that there exist 3-digit palindromic primes in base b for a set of b having density 1 and that if b is sufficiently large then there is a $3$-digit palindrome in base b having precisely two prime factors. 2. We prove various estimates for averages of sums of Kloosterman fractions over primes. The first of these improves previous results of Fouvry-Shparlinski and Baker. 3. By using the q-analogue of van der Corput's method to estimate short Kloosterman sums we study the divisor function in an arithmetic progression to modulus q. We show that the expected asymptotic formula holds for a larger range of q than was previously known, provided that q has a certain factorisation. 4. Let ‖x‖ denote the distance from x to the nearest integer. We show that for any irrational α and any ϴ< 8/23 there are infinitely many n which are the product of two primes for which ‖nalpha‖ ≤ n <sup>-ϴ</sup>. 5. By establishing an improved level of distribution we study almost-primes of the form f(p,n) where f is an irreducible binary form over Z. 6. We show that for an irreducible cubic f ? Z[x] and a full norm form $mathbf N$ for a number field $K/Q$, satisfying certain hypotheses, the variety $$f(t)=mathbf N(x_1,ldots,x_k) e 0$$ satisfies the Hasse principle. Our proof uses sieve methods.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:629546
Date January 2014
CreatorsIrving, Alastair James
ContributorsHeath-Brown, D. R.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:40f5511c-af6b-4215-b1ab-97f203e8936b

Page generated in 0.0022 seconds