Return to search

Electrochemical Aspects of Miniaturized Analytical Platforms

<p>This thesis ties some electrochemical aspects of development and fabrication of an analytical system on a microchip together. These aspects develop through the fundamentals of amperometric detection in microsystems and microfabrication via the interaction of electrochemical detection and electrophoretic separation finally to the interfacing of a microsystem to the macro world.</p><p>Paper <b>I</b> deals with amperometric detection in microscale systems and describes the fabrication of the necessary on-chip microelectrodes together with fluidic channels in silicon. It was furthermore studied, if the interelectrode distance of some μm could be used to improve the sensitivity in amperometric detection by employing redox cycling. </p><p>Papers <b>II</b>, <b>III</b> and <b>IV</b> deal with the effect of a high voltage field on amperometric detection. In analytical microdevices typically an electrophoretic separation step (e.g. capillary electrophoresis, CE) precedes the detection. The interference of the CE high voltage with the amperometric detection potential is often considered one of the main hindrances for an effective combination of these techniques. In paper <b>II</b> one reason for the observed disturbing potential shift was elucidated. It was shown that positioning of working electrode and reference electrode on an equipotiental surface eliminates this problem. Paper <b>III</b> reports an application of this technique. In paper <b>IV</b> it could be shown that this approach could further be used to significantly reduce the instrumental requirements for amperometric detection in CE.</p><p>Papers <b>V</b>, <b>VI</b>, <b>VII</b>, finally discuss the interfacing of low volumetric flows that typically occur on microanalytical devices to other techniques. Both, interfacing from liquid to liquid phase (μLC to CE in paper <b>V</b>) and from liquid to gas phase (CE to MS in paper <b>VI</b> and <b>VII</b>) were discussed. Electrochemical methods are used in this context to evaluate the stability and, in paper <b>VI</b> and <b>VII</b>, to increase the understanding of underlying processes of corrosion.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-3297
Date January 2003
CreatorsKlett, Oliver
PublisherUppsala University, Department of Chemistry, Uppsala : Acta Universitatis Upsaliensis
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationComprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1104-232X ; 810

Page generated in 0.0059 seconds